Keywords: training statistical pattern; similarity measures
@article{KYB_1998_34_4_a7,
author = {Duin, Robert P. W. and de Ridder, Dick and Tax, David M. J.},
title = {Featureless pattern classification},
journal = {Kybernetika},
pages = {399--404},
year = {1998},
volume = {34},
number = {4},
zbl = {1274.68381},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_4_a7/}
}
Duin, Robert P. W.; de Ridder, Dick; Tax, David M. J. Featureless pattern classification. Kybernetika, Tome 34 (1998) no. 4, pp. 399-404. http://geodesic.mathdoc.fr/item/KYB_1998_34_4_a7/
[1] Aizerman M. A., Braverman E. M., Rozonoer L. I.: The probability problem of pattern recognition learning and the method of potential functions. Automat. Remote Control 25 (1964), 1175-1193 | MR
[2] Devijver P. A., Kittler J.: Pattern Recognition: A Statistical Approach. Prentice Hall, London 1982 | MR | Zbl
[3] Duin R. P. W.: Small sample size generalization. In: SCIA’95, Proc. 9th Scandinavian Conf. on Image Analysis (G. Borgefors, ed.), Volume 2, Uppsala 1995, pp. 957–964
[4] Duin R. P. W., Ridder D. de: Neural network experiences between perceptrons and support vectors. In: Proc. of the 8th British Machine Vision Conference (A. F. Clark, ed.), Volume 2, Colchester 1997, pp. 590–599
[5] Duin R. P. W., Ridder D. de, Tax D. M. J.: Experiments with object based discriminant functions; a featureless approach to pattern recognition. In: Pattern Recognition in Practice V, Vlieland, 1997, to be published in Pattern Recognition Letters
[6] Duin R. P. W., Ridder D. de, Tax D. M. J.: Featureless Classification. In: Proc. 1st International Workshop Statistical Techniques in Pattern Recognition (P. Pudil, J. Novovičová and J. Grim, eds.), Prague 1997, pp. 37–42
[7] Jain A. K., Chandrasekaran B.: Dimensionality and sample size considerations in pattern Recognition practice. In: Handbook of Statistics (P. R. Krishnaiah and L. N. Kanal, eds.), Vol. 2, North–Holland, Amsterdam 1987, pp. 835–855
[8] Raudys S.: Evolution and generalization of a single neurone. I. Single layer perceptron as seven statistical classifiers. Neural Networks, to be published
[9] Schölkopf B.: Support Vector Learning. Ph.D. Thesis, Techn. Universität Berlin 1997 | Zbl
[10] Tax D. M. J., Ridder D. de, Duin R. P. W.: Support vector classifiers: a first look. In: ASCI’97, Proc. Third Annual Conference of the Advanced School for Computing and Imaging, 1997
[11] Vapnik V. N.: Estimation of Dependences Based on Empirical Data. Springer–Verlag, New York 1982 | MR | Zbl
[12] Vapnik V. N.: The Nature of Statistical Learning Theory. Springer–Verlag, Berlin 1995 | MR | Zbl
[13] Wilson C. L., Marris M. D.: Handprinted Character Database 2. National Institute of Standards and Technology; Advanced Systems division, 1990