@article{KYB_1998_34_4_a17,
author = {Raudys, \v{S}ar\={u}nas},
title = {Intrinsic dimensionality and small sample properties of classifiers},
journal = {Kybernetika},
pages = {461--466},
year = {1998},
volume = {34},
number = {4},
mrnumber = {1658933},
zbl = {1274.68346},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_4_a17/}
}
Raudys, Šarūnas. Intrinsic dimensionality and small sample properties of classifiers. Kybernetika, Tome 34 (1998) no. 4, pp. 461-466. http://geodesic.mathdoc.fr/item/KYB_1998_34_4_a17/
[1] Duin R. P. W.: Superlearning capabilities of neural networks. In: Proc. of the 8th Scandinavian Conference on Image Analysis NOVIM, Norwegian Society for Image Processing and Pattern Recognition, Tromso 1993, pp. 547–554
[3] Raudys Š.: Linear classifiers in perceptron design. In: Proceedings 13th ICPR, Vol. 4, Track D, Vienna 1996, IEEE Computer Society Press, Los Alamitos, pp. 763–767
[4] Raudys Š.: On dimensionality, sample size and classification error of nonparametric linear classification algorithms. IEEE Trans. Pattern Analysis Machine Intelligence PAMI-19 (1989), 6, 669–671
[5] Raudys Š., Jain A. K.: Small sample size effects in statistical pattern recognition: Recommendations for practitioners. IEEE Trans. Pattern Analysis Machine Intelligence PAMI-13 (1991), 252–264 | DOI