Intrinsic dimensionality and small sample properties of classifiers
Kybernetika, Tome 34 (1998) no. 4, pp. 461-466 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Small learning-set properties of the Euclidean distance, the Parzen window, the minimum empirical error and the nonlinear single layer perceptron classifiers depend on an “intrinsic dimensionality” of the data, however the Fisher linear discriminant function is sensitive to all dimensions. There is no unique definition of the “intrinsic dimensionality”. The dimensionality of the subspace where the data points are situated is not a sufficient definition of the “intrinsic dimensionality”. An exact definition depends both, on a true distribution of the pattern classes, and on the type of the classifier used.
Small learning-set properties of the Euclidean distance, the Parzen window, the minimum empirical error and the nonlinear single layer perceptron classifiers depend on an “intrinsic dimensionality” of the data, however the Fisher linear discriminant function is sensitive to all dimensions. There is no unique definition of the “intrinsic dimensionality”. The dimensionality of the subspace where the data points are situated is not a sufficient definition of the “intrinsic dimensionality”. An exact definition depends both, on a true distribution of the pattern classes, and on the type of the classifier used.
Classification : 62H30, 68T05
Keywords: intrinsic dimensionality; nonlinear classifiers
@article{KYB_1998_34_4_a17,
     author = {Raudys, \v{S}ar\={u}nas},
     title = {Intrinsic dimensionality and small sample properties of classifiers},
     journal = {Kybernetika},
     pages = {461--466},
     year = {1998},
     volume = {34},
     number = {4},
     mrnumber = {1658933},
     zbl = {1274.68346},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_4_a17/}
}
TY  - JOUR
AU  - Raudys, Šarūnas
TI  - Intrinsic dimensionality and small sample properties of classifiers
JO  - Kybernetika
PY  - 1998
SP  - 461
EP  - 466
VL  - 34
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_1998_34_4_a17/
LA  - en
ID  - KYB_1998_34_4_a17
ER  - 
%0 Journal Article
%A Raudys, Šarūnas
%T Intrinsic dimensionality and small sample properties of classifiers
%J Kybernetika
%D 1998
%P 461-466
%V 34
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_1998_34_4_a17/
%G en
%F KYB_1998_34_4_a17
Raudys, Šarūnas. Intrinsic dimensionality and small sample properties of classifiers. Kybernetika, Tome 34 (1998) no. 4, pp. 461-466. http://geodesic.mathdoc.fr/item/KYB_1998_34_4_a17/

[1] Duin R. P. W.: Superlearning capabilities of neural networks. In: Proc. of the 8th Scandinavian Conference on Image Analysis NOVIM, Norwegian Society for Image Processing and Pattern Recognition, Tromso 1993, pp. 547–554

[3] Raudys Š.: Linear classifiers in perceptron design. In: Proceedings 13th ICPR, Vol. 4, Track D, Vienna 1996, IEEE Computer Society Press, Los Alamitos, pp. 763–767

[4] Raudys Š.: On dimensionality, sample size and classification error of nonparametric linear classification algorithms. IEEE Trans. Pattern Analysis Machine Intelligence PAMI-19 (1989), 6, 669–671

[5] Raudys Š., Jain A. K.: Small sample size effects in statistical pattern recognition: Recommendations for practitioners. IEEE Trans. Pattern Analysis Machine Intelligence PAMI-13 (1991), 252–264 | DOI