A comparative evaluation of medium- and large-scale feature selectors for pattern classifiers
Kybernetika, Tome 34 (1998) no. 4, pp. 429-434 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Needs of feature selection in medium and large problems increases in many fields including medical and image processing fields. Previous comparative studies of feature selection algorithms are not satisfactory in problem size and in criterion function. In addition, no way has not shown to compare algorithms with different objectives. In this study, we propose a unified way to compare a large variety of algorithms. Our results show that the sequential floating algorithms promises for up to medium problems and genetic algorithms for medium and large problems.
Needs of feature selection in medium and large problems increases in many fields including medical and image processing fields. Previous comparative studies of feature selection algorithms are not satisfactory in problem size and in criterion function. In addition, no way has not shown to compare algorithms with different objectives. In this study, we propose a unified way to compare a large variety of algorithms. Our results show that the sequential floating algorithms promises for up to medium problems and genetic algorithms for medium and large problems.
Classification : 68T10, 68U99
Keywords: feature selection; pattern classifiers
@article{KYB_1998_34_4_a12,
     author = {Kudo, Mineichi and Sklansky, Jack},
     title = {A comparative evaluation of medium- and large-scale feature selectors for pattern classifiers},
     journal = {Kybernetika},
     pages = {429--434},
     year = {1998},
     volume = {34},
     number = {4},
     zbl = {1274.68668},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_4_a12/}
}
TY  - JOUR
AU  - Kudo, Mineichi
AU  - Sklansky, Jack
TI  - A comparative evaluation of medium- and large-scale feature selectors for pattern classifiers
JO  - Kybernetika
PY  - 1998
SP  - 429
EP  - 434
VL  - 34
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_1998_34_4_a12/
LA  - en
ID  - KYB_1998_34_4_a12
ER  - 
%0 Journal Article
%A Kudo, Mineichi
%A Sklansky, Jack
%T A comparative evaluation of medium- and large-scale feature selectors for pattern classifiers
%J Kybernetika
%D 1998
%P 429-434
%V 34
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_1998_34_4_a12/
%G en
%F KYB_1998_34_4_a12
Kudo, Mineichi; Sklansky, Jack. A comparative evaluation of medium- and large-scale feature selectors for pattern classifiers. Kybernetika, Tome 34 (1998) no. 4, pp. 429-434. http://geodesic.mathdoc.fr/item/KYB_1998_34_4_a12/

[1] Ferri F. J., Pudil P., Hatef M., Kittler J.: 1994. Comparative study of techniques for large–scale feature selection. In: Pattern Recognition in Practice IV (E. S. Gelsema and L. N. Kanal, eds.), Elsevier Science B. V. 1994, pp. 403–413

[2] Foroutan I., Sklansky J.: Feature selection for automatic classification of non–gaussian data. IEEE. Trans. Systems Man Cybernet. 17 (1987), 187–198 | DOI

[3] Kittler J.: 1978. Feature set search algorithms. In: Pattern Recognition and Signal Processing (C. H. Chen, ed.), Sijthoff and Noordhoff, Alphen aan den Rijn 1978, pp. 41–60

[4] Murphy P. M., Aha D. W.: UCI Repository of machine learning databases [Machine–readable dta repository]. Department of Information and Computation Science University of California, Irivne 1996

[5] Pudil P., Novovičová J., Kittler J.: Floating search methods in feature selection. Pattern Recognition Lett. 15 (1994), 1119–1125 | DOI

[6] Siedlecki W., Sklansky J.: A note on genetic algorithms for large–scale feature selection. Pattern Recognition Lett. 10 (1989), 335–347 | DOI | Zbl

[7] Sklansky J., Siedlecki W.: Large–scale feature selection. In: Handbook of Pattern Recognition and Computer Vision (L. F. Pau, C. H. Chen and P. S. P. Wang, eds.), Chapter 1.3, World Scientific 1993, pp. 61–123

[8] Vriesenga M. R.: Genetic Selection and Neureal Modeling for Designing Pattern Classifier. Doctor Thesis, University of California, Irvine 1995

[9] Yu B., Yuan B.: A more efficient branch and bound algorithm for feature selection. Pattern Recognition 26 (1993), 6, 883–889 | DOI

[10] Zongker D., Jain A.: Algorithms for feature selection: An evaluation. In: 13th International Conference on Pattern Recognition 1996, pp. 18–22