Keywords: nonconvex variational problem; Sobolev space; Young measure; convex compactification theory; Euler-Lagrange equation; Weierstrass condition; minimum-energy type; optimality conditions
@article{KYB_1998_34_3_a5,
author = {Roub{\'\i}\v{c}ek, Tom\'a\v{s}},
title = {Optimality conditions for nonconvex variational problems relaxed in terms of {Young} measures},
journal = {Kybernetika},
pages = {335--347},
year = {1998},
volume = {34},
number = {3},
mrnumber = {1640982},
zbl = {1274.49040},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_3_a5/}
}
Roubíček, Tomáš. Optimality conditions for nonconvex variational problems relaxed in terms of Young measures. Kybernetika, Tome 34 (1998) no. 3, pp. 335-347. http://geodesic.mathdoc.fr/item/KYB_1998_34_3_a5/
[1] Aubin J.-P., Ekeland I.: Applied Nonlinear Analysis. Wiley, New York 1984 | MR | Zbl
[2] Aubin J.-P., Frankowska H.: Set-valued Analysis. Birkhäuser 1990 | MR | Zbl
[3] Ball J. M., James R. D.: Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1988), 13–52 | DOI | MR
[4] Ball J. M., James R. D.: Proposed experimental tests of a theory of fine microstructure and the two–well problem. Philos. Trans. Roy. Soc. London Ser. A 338 (1992), 389–450 | DOI | Zbl
[5] Chipot M., Kinderlehrer D.: Equilibrium configurations of crystals. Arch. Rational Mech. Anal. 103 (1988), 237–277 | DOI | MR | Zbl
[6] DiPerna R. J., Majda A. J.: Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Physics 108 (1987), 667–689 | DOI | MR | Zbl
[7] Gamkrelidze R. V.: Principles of Optimal Control Theory (in Russian). Tbilisi Univ. Press, Tbilisi 1977. (English Translation: Plenum Press, New York 1978) | MR
[8] Hoffmann K.-H., Roubíček T.: Optimal control of a fine structure. Appl. Math. Optim. 30 (1994), 113–126 | DOI | MR | Zbl
[9] Ioffe A. D., Tihomirov V. M.: Extensions of variational problems. Trans. Moscow Math. Soc. 18 (1968), 207–273 | MR
[10] Kinderlehrer D., Pedregal P.: Characterizations of Young measures generated by gradients. Arch. Rational Mech. Anal. 115 (1991), 329–365 | DOI | MR | Zbl
[11] Kinderlehrer D., Pedregal P.: Weak convergence of integrands and the Young measure representation. SIAM J. Math. Anal. 23 (1992), 1–19 | DOI | MR | Zbl
[12] Kinderlehrer D., Pedregal P.: Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4 (1994), 59–90 | DOI | MR | Zbl
[13] Kružík M., Roubíček T.: Explicit characterization of $L^p$-Young measures. J. Math. Anal. Appl. 198 (1996), 830–843 | DOI | MR
[14] McShane E. J.: Necessary conditions in the generalized-curve problems of the calculus of variations. Duke Math. J. 7 (1940), 1–27 | MR
[15] Roubíček T.: Convex compactifications and special extensions of optimization problems. Nonlinear Anal. 16 (1991), 1117–1126 | DOI | MR
[16] Roubíček T.: A note about optimality conditions for variational problems with rapidly oscillating solutions. In: Progress in Partial Differential Equations: Calculus of Variations, Applications (C. Bandle et al, eds., Pitman Res. Notes in Math. Sci. 267), Longmann, Harlow, Essex 1992, pp. 312–314 | MR
[17] Roubíček T.: Nonconcentrating generalized Young functionals. Comment. Math. Univ. Carolin. 38 (1997), 91–99 | MR
[18] Roubíček T., Hoffmann K.-H.: About the concept of measure–valued solutions to distributed parameter systems. Math. Methods Appl. Sci. 18 (1995), 671–685 | DOI | MR | Zbl
[19] Roubíček T., Hoffmann K.-H.: Theory of convex local compactifications with applications to Lebesgue spaces. Nonlinear Anal. 25 (1995), 607–628 | DOI | MR
[20] Weierstraß K.: Mathematische Werke, Teil VII “Vorlesungen über Variationsrechnung”. (Nachdr. d. Ausg., Leipzig, 1927) Georg Olms, Verlagsbuchhandlung, Hildesheim 1967
[21] Young L. C.: Necessary conditions in the calculus of variations. Acta Math. 69 (1938), 239–258 | DOI | MR | Zbl
[22] Young L. C.: Lectures on the Calculus of Variations and Optimal Control Theory. W. B. Saunders, Philadelphia 1969 | MR | Zbl
[23] Zeidler E.: Nonlinear Functional Analysis and its Applications III. Variational Methods and Optimization. Springer, New York 1985 | MR | Zbl