Optimality conditions for nonconvex variational problems relaxed in terms of Young measures
Kybernetika, Tome 34 (1998) no. 3, pp. 335-347 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The scalar nonconvex variational problems of the minimum-energy type on Sobolev spaces are studied. As the Euler–Lagrange equation dramatically looses selectivity when extended in terms of the Young measures, the correct optimality conditions are sought by means of the convex compactification theory. It turns out that these conditions basically combine one part from the Euler–Lagrange equation with one part from the Weierstrass condition.
The scalar nonconvex variational problems of the minimum-energy type on Sobolev spaces are studied. As the Euler–Lagrange equation dramatically looses selectivity when extended in terms of the Young measures, the correct optimality conditions are sought by means of the convex compactification theory. It turns out that these conditions basically combine one part from the Euler–Lagrange equation with one part from the Weierstrass condition.
Classification : 49J40, 49K20, 49K27, 49Q20
Keywords: nonconvex variational problem; Sobolev space; Young measure; convex compactification theory; Euler-Lagrange equation; Weierstrass condition; minimum-energy type; optimality conditions
@article{KYB_1998_34_3_a5,
     author = {Roub{\'\i}\v{c}ek, Tom\'a\v{s}},
     title = {Optimality conditions for nonconvex variational problems relaxed in terms of {Young} measures},
     journal = {Kybernetika},
     pages = {335--347},
     year = {1998},
     volume = {34},
     number = {3},
     mrnumber = {1640982},
     zbl = {1274.49040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_3_a5/}
}
TY  - JOUR
AU  - Roubíček, Tomáš
TI  - Optimality conditions for nonconvex variational problems relaxed in terms of Young measures
JO  - Kybernetika
PY  - 1998
SP  - 335
EP  - 347
VL  - 34
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1998_34_3_a5/
LA  - en
ID  - KYB_1998_34_3_a5
ER  - 
%0 Journal Article
%A Roubíček, Tomáš
%T Optimality conditions for nonconvex variational problems relaxed in terms of Young measures
%J Kybernetika
%D 1998
%P 335-347
%V 34
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1998_34_3_a5/
%G en
%F KYB_1998_34_3_a5
Roubíček, Tomáš. Optimality conditions for nonconvex variational problems relaxed in terms of Young measures. Kybernetika, Tome 34 (1998) no. 3, pp. 335-347. http://geodesic.mathdoc.fr/item/KYB_1998_34_3_a5/

[1] Aubin J.-P., Ekeland I.: Applied Nonlinear Analysis. Wiley, New York 1984 | MR | Zbl

[2] Aubin J.-P., Frankowska H.: Set-valued Analysis. Birkhäuser 1990 | MR | Zbl

[3] Ball J. M., James R. D.: Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1988), 13–52 | DOI | MR

[4] Ball J. M., James R. D.: Proposed experimental tests of a theory of fine microstructure and the two–well problem. Philos. Trans. Roy. Soc. London Ser. A 338 (1992), 389–450 | DOI | Zbl

[5] Chipot M., Kinderlehrer D.: Equilibrium configurations of crystals. Arch. Rational Mech. Anal. 103 (1988), 237–277 | DOI | MR | Zbl

[6] DiPerna R. J., Majda A. J.: Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Physics 108 (1987), 667–689 | DOI | MR | Zbl

[7] Gamkrelidze R. V.: Principles of Optimal Control Theory (in Russian). Tbilisi Univ. Press, Tbilisi 1977. (English Translation: Plenum Press, New York 1978) | MR

[8] Hoffmann K.-H., Roubíček T.: Optimal control of a fine structure. Appl. Math. Optim. 30 (1994), 113–126 | DOI | MR | Zbl

[9] Ioffe A. D., Tihomirov V. M.: Extensions of variational problems. Trans. Moscow Math. Soc. 18 (1968), 207–273 | MR

[10] Kinderlehrer D., Pedregal P.: Characterizations of Young measures generated by gradients. Arch. Rational Mech. Anal. 115 (1991), 329–365 | DOI | MR | Zbl

[11] Kinderlehrer D., Pedregal P.: Weak convergence of integrands and the Young measure representation. SIAM J. Math. Anal. 23 (1992), 1–19 | DOI | MR | Zbl

[12] Kinderlehrer D., Pedregal P.: Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4 (1994), 59–90 | DOI | MR | Zbl

[13] Kružík M., Roubíček T.: Explicit characterization of $L^p$-Young measures. J. Math. Anal. Appl. 198 (1996), 830–843 | DOI | MR

[14] McShane E. J.: Necessary conditions in the generalized-curve problems of the calculus of variations. Duke Math. J. 7 (1940), 1–27 | MR

[15] Roubíček T.: Convex compactifications and special extensions of optimization problems. Nonlinear Anal. 16 (1991), 1117–1126 | DOI | MR

[16] Roubíček T.: A note about optimality conditions for variational problems with rapidly oscillating solutions. In: Progress in Partial Differential Equations: Calculus of Variations, Applications (C. Bandle et al, eds., Pitman Res. Notes in Math. Sci. 267), Longmann, Harlow, Essex 1992, pp. 312–314 | MR

[17] Roubíček T.: Nonconcentrating generalized Young functionals. Comment. Math. Univ. Carolin. 38 (1997), 91–99 | MR

[18] Roubíček T., Hoffmann K.-H.: About the concept of measure–valued solutions to distributed parameter systems. Math. Methods Appl. Sci. 18 (1995), 671–685 | DOI | MR | Zbl

[19] Roubíček T., Hoffmann K.-H.: Theory of convex local compactifications with applications to Lebesgue spaces. Nonlinear Anal. 25 (1995), 607–628 | DOI | MR

[20] Weierstraß K.: Mathematische Werke, Teil VII “Vorlesungen über Variationsrechnung”. (Nachdr. d. Ausg., Leipzig, 1927) Georg Olms, Verlagsbuchhandlung, Hildesheim 1967

[21] Young L. C.: Necessary conditions in the calculus of variations. Acta Math. 69 (1938), 239–258 | DOI | MR | Zbl

[22] Young L. C.: Lectures on the Calculus of Variations and Optimal Control Theory. W. B. Saunders, Philadelphia 1969 | MR | Zbl

[23] Zeidler E.: Nonlinear Functional Analysis and its Applications III. Variational Methods and Optimization. Springer, New York 1985 | MR | Zbl