Spectrum of randomly sampled multivariate ARMA models
Kybernetika, Tome 34 (1998) no. 3, pp. 317-333 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper is devoted to the spectrum of multivariate randomly sampled autoregressive moving-average (ARMA) models. We determine precisely the spectrum numerator coefficients of the randomly sampled ARMA models. We give results when the non-zero poles of the initial ARMA model are simple. We first prove the results when the probability generating function of the random sampling law is injective, then we precise the results when it is not injective.
The paper is devoted to the spectrum of multivariate randomly sampled autoregressive moving-average (ARMA) models. We determine precisely the spectrum numerator coefficients of the randomly sampled ARMA models. We give results when the non-zero poles of the initial ARMA model are simple. We first prove the results when the probability generating function of the random sampling law is injective, then we precise the results when it is not injective.
Classification : 60G10, 62M10, 62M15
Keywords: ARMA model; spectral analysis
@article{KYB_1998_34_3_a4,
     author = {Kadi, Amina},
     title = {Spectrum of randomly sampled multivariate {ARMA} models},
     journal = {Kybernetika},
     pages = {317--333},
     year = {1998},
     volume = {34},
     number = {3},
     mrnumber = {1640978},
     zbl = {1274.62633},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_3_a4/}
}
TY  - JOUR
AU  - Kadi, Amina
TI  - Spectrum of randomly sampled multivariate ARMA models
JO  - Kybernetika
PY  - 1998
SP  - 317
EP  - 333
VL  - 34
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1998_34_3_a4/
LA  - en
ID  - KYB_1998_34_3_a4
ER  - 
%0 Journal Article
%A Kadi, Amina
%T Spectrum of randomly sampled multivariate ARMA models
%J Kybernetika
%D 1998
%P 317-333
%V 34
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1998_34_3_a4/
%G en
%F KYB_1998_34_3_a4
Kadi, Amina. Spectrum of randomly sampled multivariate ARMA models. Kybernetika, Tome 34 (1998) no. 3, pp. 317-333. http://geodesic.mathdoc.fr/item/KYB_1998_34_3_a4/

[1] Bloomfield P.: Spectral analysis with randomly missing observations. J. Roy. Statist. Soc. B 32 (1970), 369–380 | MR | Zbl

[2] Brillinger D. R.: Statistical inference for irregularly observed processes. In: Proceeding of a Symposium Time Series Analysis of Irregularly Observed Data (E. Parzen, ed., Lecture Notes in Statistics 25), Springer Verlag, Berlin 1983 | MR

[3] Dunsmuir W.: Estimation for stationary time series when data are irregularly spaced or missing. In: Applied Time Series II (D. F. Findley, ed.), Academic Press, New York 1981 | Zbl

[4] Dunsmuir W.: A central limit theorem for estimation in Gaussian stationary time series observed at unequally spaced times. Stochastic Process. Appl. 14 (1983), 279–295 | DOI | MR | Zbl

[5] Dunsmuir W.: Large sample properties of estimation in time series observed at unequally spaced times. In: Proceeding of a Symposium Time Series Analysis of Irregularly Observed Data (E. Parzen, ed., Lecture Notes in Statistics 25), Springer Verlag, Berlin 1983 | MR | Zbl

[6] Dunsmuir W., Robinson P. M.: Parametric estimators for stationary time series with missing observations. Adv. in Appl. Probab. 13 (1981), 126–146 | DOI | MR | Zbl

[7] Dunsmuir W., Robinson P. M.: Asymptotic theory for time series containing missing and amplitude modulated observations. Sankhyā Ser. A 43 (1981), Pt. 3, 260–281 | MR | Zbl

[8] Dunsmuir W., Robinson P. M.: Estimation of time series models in the presence of missing data. J. Amer. Statist. Assoc. 76 (1981), 375, 560–568 | DOI | Zbl

[9] Hannan E. J.: Multiple Time Series. Wiley, New York 1970 | MR | Zbl

[10] Kadi A.: Agrégation et échantillonnage aléatoire de séries temporelles. Thèse, Université de Paris–Sud 1994

[11] Kadi A., Oppenheim G., Viano M. C.: Random aggregation of uni and multivariate linear proceses. J. Time Ser. Anal. 15 (1994), 1, 31–43 | DOI | MR

[12] Kadi A., Mokkadem A.: Matrix representations of spectral coefficients of ARMA models randomly sampled. Stochastic Process. Appl. 54 (1994), 1, 121–137 | DOI | MR

[13] Marshall R. J.: Autocorrelation estimation of time series with randomly missing observations. Biometrika 67 (1980), 3, 567–570 | DOI | MR | Zbl

[14] Parzen E.: On spectral analysis with missing observations and amplitude modulation. Sankhyā, Ser. A 25 (1963), 383–392 | MR | Zbl

[15] Robinson P. M.: Continuous model fitting from discrete data. In: Directions in Time Series (D. R. Brillinger and G. C. Tiao, eds.), Institute of Mathematical Statistics 1980, pp. 263–278 | MR

[16] Robinson P. M.: Multiple time series analysis of irregularly spaced data. In: Proceeding of a Symposium Time Series Analysis of Irregularly Observed Data (E. Parzen, ed., Lecture Notes in Statistics 25), Springer Verlag, Berlin 1983 | MR | Zbl

[17] Shapiro H. S., Silverman R. A.: Alias–free sampling of random noise. J. Soc. Indust. Appl. Math. 8 (1960), 2, 225–248 | DOI | MR | Zbl

[18] Toloi C. M. C., Morettin P. A.: Spectral analysis for amplitude–modulated time series. J. Time Ser. Anal. 14 (1993), 4, 409–432 | DOI | MR | Zbl