@article{KYB_1998_34_3_a4,
author = {Kadi, Amina},
title = {Spectrum of randomly sampled multivariate {ARMA} models},
journal = {Kybernetika},
pages = {317--333},
year = {1998},
volume = {34},
number = {3},
mrnumber = {1640978},
zbl = {1274.62633},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_3_a4/}
}
Kadi, Amina. Spectrum of randomly sampled multivariate ARMA models. Kybernetika, Tome 34 (1998) no. 3, pp. 317-333. http://geodesic.mathdoc.fr/item/KYB_1998_34_3_a4/
[1] Bloomfield P.: Spectral analysis with randomly missing observations. J. Roy. Statist. Soc. B 32 (1970), 369–380 | MR | Zbl
[2] Brillinger D. R.: Statistical inference for irregularly observed processes. In: Proceeding of a Symposium Time Series Analysis of Irregularly Observed Data (E. Parzen, ed., Lecture Notes in Statistics 25), Springer Verlag, Berlin 1983 | MR
[3] Dunsmuir W.: Estimation for stationary time series when data are irregularly spaced or missing. In: Applied Time Series II (D. F. Findley, ed.), Academic Press, New York 1981 | Zbl
[4] Dunsmuir W.: A central limit theorem for estimation in Gaussian stationary time series observed at unequally spaced times. Stochastic Process. Appl. 14 (1983), 279–295 | DOI | MR | Zbl
[5] Dunsmuir W.: Large sample properties of estimation in time series observed at unequally spaced times. In: Proceeding of a Symposium Time Series Analysis of Irregularly Observed Data (E. Parzen, ed., Lecture Notes in Statistics 25), Springer Verlag, Berlin 1983 | MR | Zbl
[6] Dunsmuir W., Robinson P. M.: Parametric estimators for stationary time series with missing observations. Adv. in Appl. Probab. 13 (1981), 126–146 | DOI | MR | Zbl
[7] Dunsmuir W., Robinson P. M.: Asymptotic theory for time series containing missing and amplitude modulated observations. Sankhyā Ser. A 43 (1981), Pt. 3, 260–281 | MR | Zbl
[8] Dunsmuir W., Robinson P. M.: Estimation of time series models in the presence of missing data. J. Amer. Statist. Assoc. 76 (1981), 375, 560–568 | DOI | Zbl
[9] Hannan E. J.: Multiple Time Series. Wiley, New York 1970 | MR | Zbl
[10] Kadi A.: Agrégation et échantillonnage aléatoire de séries temporelles. Thèse, Université de Paris–Sud 1994
[11] Kadi A., Oppenheim G., Viano M. C.: Random aggregation of uni and multivariate linear proceses. J. Time Ser. Anal. 15 (1994), 1, 31–43 | DOI | MR
[12] Kadi A., Mokkadem A.: Matrix representations of spectral coefficients of ARMA models randomly sampled. Stochastic Process. Appl. 54 (1994), 1, 121–137 | DOI | MR
[13] Marshall R. J.: Autocorrelation estimation of time series with randomly missing observations. Biometrika 67 (1980), 3, 567–570 | DOI | MR | Zbl
[14] Parzen E.: On spectral analysis with missing observations and amplitude modulation. Sankhyā, Ser. A 25 (1963), 383–392 | MR | Zbl
[15] Robinson P. M.: Continuous model fitting from discrete data. In: Directions in Time Series (D. R. Brillinger and G. C. Tiao, eds.), Institute of Mathematical Statistics 1980, pp. 263–278 | MR
[16] Robinson P. M.: Multiple time series analysis of irregularly spaced data. In: Proceeding of a Symposium Time Series Analysis of Irregularly Observed Data (E. Parzen, ed., Lecture Notes in Statistics 25), Springer Verlag, Berlin 1983 | MR | Zbl
[17] Shapiro H. S., Silverman R. A.: Alias–free sampling of random noise. J. Soc. Indust. Appl. Math. 8 (1960), 2, 225–248 | DOI | MR | Zbl
[18] Toloi C. M. C., Morettin P. A.: Spectral analysis for amplitude–modulated time series. J. Time Ser. Anal. 14 (1993), 4, 409–432 | DOI | MR | Zbl