Keywords: maximum likelihood estimation; information divergence; Gaussian process; autoregressive processes
@article{KYB_1998_34_3_a2,
author = {Mich\'alek, Ji\v{r}{\'\i}},
title = {Maximum likelihood principle and $I$-divergence: continuous time observations},
journal = {Kybernetika},
pages = {289--308},
year = {1998},
volume = {34},
number = {3},
mrnumber = {1640970},
zbl = {1274.62067},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_3_a2/}
}
Michálek, Jiří. Maximum likelihood principle and $I$-divergence: continuous time observations. Kybernetika, Tome 34 (1998) no. 3, pp. 289-308. http://geodesic.mathdoc.fr/item/KYB_1998_34_3_a2/
[1] Anděl J.: Statistical Analysis of Time Series (in Czech). SNTL, Prague 1976
[2] Dzhaparidze K.: Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series. (Springer Series in Statistics.) Springer Verlag, Berlin 1986 | MR | Zbl
[3] Hájek J.: On the simple linear model for Gaussian processes. In: Trans. of the 2nd Prague Conference, Academia, Prague 1959, pp. 185–197
[4] Hájek J.: On linear statistical problems in stochastic processes. Czechoslovak Math. J. 12 (87) (1962), 404–444 | MR
[5] Michálek J.: Asymptotic Rényi’s rate of Gaussian processes. Problems Control Inform. Theory 19 (1990), 3, 209–227 | Zbl
[6] Michálek J.: Maximum likelihood principle and $I$-divergence: observations in discrete time. Kybernetika 34 (1998), 265–288 | MR
[7] Pisarenko V. F.: On absolute continuity of the measures corresponding to a rational spectral density function (in Russian). Teor. Veroyatnost. i Primenen. IV (1959), 481–481
[8] Pisarenko V. F.: On parameter estimations of a Gaussian stationary processes with a spectral density function (in Russian). Lithuanian Math. J. (1962)
[9] Rozanov J. A.: On application a central limit theorem. In: Proc. Fourth Berkeley Symp. Math. Stat. Prob., Berkeley 1961, Vol. 2