Maximum likelihood principle and $I$-divergence: continuous time observations
Kybernetika, Tome 34 (1998) no. 3, pp. 289-308 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper investigates the relation between maximum likelihood and minimum $I$-divergence estimates of unknown parameters and studies the asymptotic behaviour of the likelihood ratio maximum. Observations are assumed to be done in the continuous time.
The paper investigates the relation between maximum likelihood and minimum $I$-divergence estimates of unknown parameters and studies the asymptotic behaviour of the likelihood ratio maximum. Observations are assumed to be done in the continuous time.
Classification : 62B10, 62F10, 62F12, 62M10
Keywords: maximum likelihood estimation; information divergence; Gaussian process; autoregressive processes
@article{KYB_1998_34_3_a2,
     author = {Mich\'alek, Ji\v{r}{\'\i}},
     title = {Maximum likelihood principle and $I$-divergence: continuous time observations},
     journal = {Kybernetika},
     pages = {289--308},
     year = {1998},
     volume = {34},
     number = {3},
     mrnumber = {1640970},
     zbl = {1274.62067},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_3_a2/}
}
TY  - JOUR
AU  - Michálek, Jiří
TI  - Maximum likelihood principle and $I$-divergence: continuous time observations
JO  - Kybernetika
PY  - 1998
SP  - 289
EP  - 308
VL  - 34
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1998_34_3_a2/
LA  - en
ID  - KYB_1998_34_3_a2
ER  - 
%0 Journal Article
%A Michálek, Jiří
%T Maximum likelihood principle and $I$-divergence: continuous time observations
%J Kybernetika
%D 1998
%P 289-308
%V 34
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1998_34_3_a2/
%G en
%F KYB_1998_34_3_a2
Michálek, Jiří. Maximum likelihood principle and $I$-divergence: continuous time observations. Kybernetika, Tome 34 (1998) no. 3, pp. 289-308. http://geodesic.mathdoc.fr/item/KYB_1998_34_3_a2/

[1] Anděl J.: Statistical Analysis of Time Series (in Czech). SNTL, Prague 1976

[2] Dzhaparidze K.: Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series. (Springer Series in Statistics.) Springer Verlag, Berlin 1986 | MR | Zbl

[3] Hájek J.: On the simple linear model for Gaussian processes. In: Trans. of the 2nd Prague Conference, Academia, Prague 1959, pp. 185–197

[4] Hájek J.: On linear statistical problems in stochastic processes. Czechoslovak Math. J. 12 (87) (1962), 404–444 | MR

[5] Michálek J.: Asymptotic Rényi’s rate of Gaussian processes. Problems Control Inform. Theory 19 (1990), 3, 209–227 | Zbl

[6] Michálek J.: Maximum likelihood principle and $I$-divergence: observations in discrete time. Kybernetika 34 (1998), 265–288 | MR

[7] Pisarenko V. F.: On absolute continuity of the measures corresponding to a rational spectral density function (in Russian). Teor. Veroyatnost. i Primenen. IV (1959), 481–481

[8] Pisarenko V. F.: On parameter estimations of a Gaussian stationary processes with a spectral density function (in Russian). Lithuanian Math. J. (1962)

[9] Rozanov J. A.: On application a central limit theorem. In: Proc. Fourth Berkeley Symp. Math. Stat. Prob., Berkeley 1961, Vol. 2