Keywords: maximum likelihood estimate; information divergence; exponential families; discrete time process; autoregressive sequences
@article{KYB_1998_34_3_a1,
author = {Mich\'alek, Ji\v{r}{\'\i}},
title = {Maximum likelihood principle and $I$-divergence: discrete time observations},
journal = {Kybernetika},
pages = {265--288},
year = {1998},
volume = {34},
number = {3},
mrnumber = {1640966},
zbl = {1274.62066},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_3_a1/}
}
Michálek, Jiří. Maximum likelihood principle and $I$-divergence: discrete time observations. Kybernetika, Tome 34 (1998) no. 3, pp. 265-288. http://geodesic.mathdoc.fr/item/KYB_1998_34_3_a1/
[1] Anderson T. W.: The Statistical Analysis of Time Series. Wiley, New York 1971 | MR | Zbl
[2] Basseville M., Benveniste A.: Detection of Abrupt Changes in Signals and Dynamical Systems. Springer–Verlag, Berlin 1986 | Zbl
[3] Krishnaiah P. R., Miao B. Q.: Review about estimation of change points. In: Handbook of Statistics (P. R. Krishnaiah and C. R. Rao, eds.), Elsevier Sci. Publishers, Amsterdam 1988, Vol. 7, pp. 375–402
[4] Kullback S.: Information Theory and Statistics (in Russian). Nauka, Moscow 1967. Translated from the English original
[5] Kupperman M.: Further application of information theory to multivariate analysis and statistical inference. Ann. Math. Statist. 27 (1956), 1184
[6] Kűchler V., Sorensen M.: Exponential families of stochastic processes: A unifying semimartingale approach. Internat. Statist. Rev. (1989), 123–144 | DOI
[7] Michálek J.: Yule–Walker estimates and asymptotic $I$-divergence rate. Problems Control Inform. Theory 19 (1990), 5–6, 387–398 | MR | Zbl
[8] Michálek J.: A method of detecting changes in the behaviour of locally stationary sequences. Kybernetika 31 (1995), 1, 17–29 | MR | Zbl
[9] Morales D., Pardo L., Vajda I.: About classical and some new statistics for testing hypothesis in parametric models. J. Multivariate Anal. (to appear) | MR
[10] Page E.: Continuous inspection schemes. Biometrika 41 (1954), 100–115 | DOI | MR | Zbl