Robust and nonrobust tracking
Kybernetika, Tome 34 (1998) no. 2, pp. 203-216 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For zero steady state tracking error it is necessary to include $n$ integrators in the control loop in the case of reference signal generated by $n$ integrators. This result can be generalized to arbitrary $n$ unstable modes of the reference generator according to the “internal model principle”. This paper shows an alternative solution of the asymptotic reference signal tracking problem using feedforward. The solution is not robust but gives a feedback controller with reduced complexity. Robust tracking structure with error driven controller and nonrobust control structure with feedforward are also compared with respect to quadratic criteria. The alternative solution with feedforward is not asymptoticaly robust but sometimes gives better performance with respect to quadratic criteria.
For zero steady state tracking error it is necessary to include $n$ integrators in the control loop in the case of reference signal generated by $n$ integrators. This result can be generalized to arbitrary $n$ unstable modes of the reference generator according to the “internal model principle”. This paper shows an alternative solution of the asymptotic reference signal tracking problem using feedforward. The solution is not robust but gives a feedback controller with reduced complexity. Robust tracking structure with error driven controller and nonrobust control structure with feedforward are also compared with respect to quadratic criteria. The alternative solution with feedforward is not asymptoticaly robust but sometimes gives better performance with respect to quadratic criteria.
Classification : 93B35, 93C05
Keywords: signal tracking problem; feedback structure; feedforward control; robust tracking
@article{KYB_1998_34_2_a7,
     author = {\v{S}techa, Jan},
     title = {Robust and nonrobust tracking},
     journal = {Kybernetika},
     pages = {203--216},
     year = {1998},
     volume = {34},
     number = {2},
     zbl = {1274.93068},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_2_a7/}
}
TY  - JOUR
AU  - Štecha, Jan
TI  - Robust and nonrobust tracking
JO  - Kybernetika
PY  - 1998
SP  - 203
EP  - 216
VL  - 34
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_1998_34_2_a7/
LA  - en
ID  - KYB_1998_34_2_a7
ER  - 
%0 Journal Article
%A Štecha, Jan
%T Robust and nonrobust tracking
%J Kybernetika
%D 1998
%P 203-216
%V 34
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_1998_34_2_a7/
%G en
%F KYB_1998_34_2_a7
Štecha, Jan. Robust and nonrobust tracking. Kybernetika, Tome 34 (1998) no. 2, pp. 203-216. http://geodesic.mathdoc.fr/item/KYB_1998_34_2_a7/

[1] Kučera V.: Discrete Linear Control: The Polynomial Equation Approach. Wiley, Chichester 1979 | MR | Zbl

[2] Kwakernaak H., Sivan R.: Linear Optimal Control Systems. Wiley, New York 1972 | MR | Zbl

[3] Neuman P., Husták P., Štecha J., Havlena V.: State controller/observer design for superheater temperature control. In: Proceedings of the 4th IFAC Symposium CADCS’88, Beijing 1988, pp. 168–174

[4] Štecha J., Havlena V.: Internal model principle and asymptotic reference signal tracking. In: Proceedings of the Cairo Third IASTED International Conference Computer Applications in Industry, Cairo 1994, pp. 107–110

[5] Štecha J., Kraus F.: Robustness versus control quality in asymptotic reference tracking. In: Proceedings of the Fifteenth IASTED International Conference “Modelling, Identification and Control”, Innsbruck 1996, pp. 292–294

[6] Vidyasagar M.: Control System Synthesis: A Factorization Approach. MIT Press, Cambridge, MA 1987 | MR | Zbl

[7] Kučera V.: Analysis and Design of Discrete Linear Control Systems. Academia, Prague 1991 | MR | Zbl