Keywords: possibilistic measure; conditional probability; statistical independence
@article{KYB_1998_34_2_a0,
author = {Kramosil, Ivan},
title = {Alternative definitions of conditional possibilistic measures},
journal = {Kybernetika},
pages = {137--147},
year = {1998},
volume = {34},
number = {2},
mrnumber = {1621506},
zbl = {1274.28031},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_2_a0/}
}
Kramosil, Ivan. Alternative definitions of conditional possibilistic measures. Kybernetika, Tome 34 (1998) no. 2, pp. 137-147. http://geodesic.mathdoc.fr/item/KYB_1998_34_2_a0/
[1] Campos L. M. de, Heuter J. F., Moral S.: Possibilistic independence. In: Proceedings of EUFIT 95 (Third European Congress on Intelligent Techniques and Soft Computing), Verlag Mainz and Wissenschaftsverlag, Aachen 1995, vol. 1, pp. 69–73
[2] Dubois D., Prade H.: Théorie des Possibilités – Applications à la Représentation de Connaissances en Informatique. Mason, Paris 1985
[3] Hisdal E.: Conditional possibilities, independence and noninteraction. Fuzzy Sets and Systems 1 (1978), 283–297 | DOI | Zbl
[4] Kramosil I.: Extensional processing of probability measures. Internat. J. Gen. Systems 22 (1994), 159–170 | DOI | Zbl
[5] Kramosil I.: An axiomatic approach to extensional probability measures. In: Proceedings of the European Conference Symbolic and Quantitative Approaches to Reasoning and Uncertainty, Fribourg (Lecture Notes in Artificial Intelligence 946.) Springer–Verlag, Berlin 1995, pp. 267–276 | MR
[6] Lewis D.: Probabilities of conditionals and conditional probabilities. Philos. Review 85 (1976), 297–315 | DOI
[7] Loève M.: Probability Theory. D. van Nostrand, New York 1955 | MR | Zbl
[8] Pearl J.: Probabilistic Reasoning in Intelligent Systems – Networks of Plausible Inference. Morgan and Kaufmann, San Matteo, California 1988 | MR | Zbl
[9] Shafer G.: A Mathematical Theory of Evidence. Princeton Univ. Press, Princeton, New Jersey 1976 | MR | Zbl
[10] Smets, Ph.: About updating. In: Uncertainty in Artificial Intelligence 91 (D’Ambrosio, Ph. Smets and P. P. Bonissone, eds.), Morgan Kaufman, Sao Matteo, California 1991, pp. 378–385
[11] Zadeh L. A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1 (1978), 3–28 | DOI | MR