A method for knowledge integration
Kybernetika, Tome 34 (1998) no. 1, pp. 41-55 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

With the aid of Markov Chain Monte Carlo methods we can sample even from complex multi-dimensional distributions which cannot be exactly calculated. Thus, an application to the problem of knowledge integration (e. g. in expert systems) is straightforward.
With the aid of Markov Chain Monte Carlo methods we can sample even from complex multi-dimensional distributions which cannot be exactly calculated. Thus, an application to the problem of knowledge integration (e. g. in expert systems) is straightforward.
Classification : 60J10, 60J22, 62H99, 65C05, 65C40, 68T30, 68T35
Keywords: Markov chain Monte Carlo; multi-dimensional distribution; Gibbs distribution; sampled data; knowledge integration; expert systems
@article{KYB_1998_34_1_a4,
     author = {Jan\v{z}ura, Martin and Bo\v{c}ek, Pavel},
     title = {A method for knowledge integration},
     journal = {Kybernetika},
     pages = {41--55},
     year = {1998},
     volume = {34},
     number = {1},
     mrnumber = {1619054},
     zbl = {1274.65004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_1_a4/}
}
TY  - JOUR
AU  - Janžura, Martin
AU  - Boček, Pavel
TI  - A method for knowledge integration
JO  - Kybernetika
PY  - 1998
SP  - 41
EP  - 55
VL  - 34
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_1998_34_1_a4/
LA  - en
ID  - KYB_1998_34_1_a4
ER  - 
%0 Journal Article
%A Janžura, Martin
%A Boček, Pavel
%T A method for knowledge integration
%J Kybernetika
%D 1998
%P 41-55
%V 34
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_1998_34_1_a4/
%G en
%F KYB_1998_34_1_a4
Janžura, Martin; Boček, Pavel. A method for knowledge integration. Kybernetika, Tome 34 (1998) no. 1, pp. 41-55. http://geodesic.mathdoc.fr/item/KYB_1998_34_1_a4/

[1] Besag J.: On the statistical analysis of dirty pictures (with discussion). J. Roy. Statist. Soc. Ser. B 48 (1986), 259–302 | MR | Zbl

[2] Gallager R.: Information Theory and Reliable Communication. J. Wiley, New York 1968 | Zbl

[3] Gelfand A. E., Smith A. F. M.: Sampling–based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85 (1990), 398–409 | DOI | MR | Zbl

[4] Geman D., Geman S.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6 (1984), 721–741 | DOI | Zbl

[5] Gilks W. R., Richardson S., (eds.) D. J. Spiegelhalter: Markov Chain Monte Carlo in Practice. Chapman and Hall, London 1996 | MR | Zbl

[6] Hadley G.: Linear Programming. Addison Wesley, Reading 1962 | MR | Zbl

[7] Janžura M., Přeučil S.: An expert system based on the simulated annealing algorithm. In: WUPES 91, Prague 1991

[8] Lauritzen S. L.: Graphical Models. University Press, Oxford 1996 | MR | Zbl

[9] Matúš F.: On iterations of average of $I$-projections. In: Highly Structured Stochastic Systems. Rebild, Denmark 1996

[11] Moussouris J.: Gibbs and Markov random systems with constraints. J. Statist. Phys. 10 (1974), 1, 11–33 | DOI | MR

[12] Perez A.: Barycenter of a set of probability measures and its application in statistical decision. In: Proceedings COMPSTAT 1984, Physica–Verlag, Wien 1984, pp. 154–159 | MR | Zbl

[13] Winkler G.: Image Analysis, Random Fields and Dynamic Monte Carlo Methods. Springer–Verlag, Berlin 1995 | MR | Zbl