Keywords: degree of probabilistic dependence; $t$-norm; fuzzy logic
@article{KYB_1998_34_1_a10,
author = {Navara, Mirko and Pt\'ak, Pavel},
title = {Considering uncertainty and dependence in {Boolean,} quantum and fuzzy logics},
journal = {Kybernetika},
pages = {121--134},
year = {1998},
volume = {34},
number = {1},
mrnumber = {1619059},
zbl = {1274.03101},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_1_a10/}
}
Navara, Mirko; Pták, Pavel. Considering uncertainty and dependence in Boolean, quantum and fuzzy logics. Kybernetika, Tome 34 (1998) no. 1, pp. 121-134. http://geodesic.mathdoc.fr/item/KYB_1998_34_1_a10/
[1] Beran L.: Orthomodular Lattices. Algebraic Approach. Academia, Praha 1984 | MR | Zbl
[2] Butnariu D., Klement E. P.: Triangular Norm–Based Measures and Games with Fuzzy Coalitions. Kluwer, Dordrecht 1993 | MR | Zbl
[3] Lucia P. de, Pták P.: Quantum probability spaces that are nearly classical. Bull. Polish Acad. Sci. Math. 40 (1992), 163–173 | MR | Zbl
[4] Dubois D.: Generalized probabilistic independence and its implications for utility. Oper. Res. Lett. 5 (1986), 255–260 | DOI | MR | Zbl
[5] Dvurečenskij A., Riečan B.: On joint distribution of observables for F-quantum spaces. Fuzzy Sets and Systems 39 (1991), 65–73 | DOI | MR
[6] Frank M. J.: On the simultaneous associativity of $F(x,y)$ and $x+y-F(x,y)$. Aequationes Math. 19 (1979), 194–226 | DOI | MR | Zbl
[7] Kalmbach G.: Orthomodular Lattices. Academic Press, London 1983 | MR | Zbl
[8] Kläy M. P., Foulis D. J.: Maximum likelihood estimation on generalized sample spaces: an alternative resolution of Simpson’s paradox. Found. Phys. 20 (1990), 777–799 | DOI | MR
[9] Klement E. P., Mesiar R., Navara M.: Extensions of Boolean functions to $T$-tribes of fuzzy sets. BUSEFAL 63 (1995), 16–21
[10] Klement E. P., Navara M.: A characterization of tribes with respect to the Łukasiewicz $t$-norm. Czechoslovak Math. J. 47 (122) (1997), 689–700 | DOI | MR | Zbl
[11] Majerník V., Pulmannová S.: Bell inequalities on quantum logics. J. Math. Phys. 33 (1992), 2173–2178 | DOI
[12] Mesiar R.: Fundamental triangular norm based tribes and measures. J. Math. Anal. Appl. 177 (1993), 633–640 | DOI | MR | Zbl
[13] Mesiar R.: On the structure of $T_s$-tribes. Tatra Mountains Math. Publ. 3 (1993), 167–172 | MR
[14] Mesiar R.: Do fuzzy quantum structures exist? Internat. J. Theoret. Physics 34 (1995), 1609–1614 | DOI | MR
[15] Mesiar R., Navara M.: $T_s$-tribes and $T_s$-measures. J. Math. Anal. Appl. 201 (1996), 91–102 | DOI | MR
[16] Mundici D.: Interpretation of AF C$^*$-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15–63 | DOI | MR | Zbl
[17] Navara M.: A characterization of triangular norm based tribes. Tatra Mountains Math. Publ. 3 (1993), 161–166 | MR | Zbl
[18] Navara M.: Algebraic approach to fuzzy quantum spaces. Demonstratio Math. 27 (1994), 589–600 | MR | Zbl
[19] Navara M.: On generating finite orthomodular sublattices. Tatra Mountains Math. Publ. 10 (1997), 109–117 | MR | Zbl
[20] Navara M., Pták P.: P-measures on soft fuzzy $\sigma $-algebras. Fuzzy Sets and Systems 56 (1993), 123–126 | DOI | MR | Zbl
[21] Navara M., Pták P.: Uncertainty and dependence in classical and quantum logic – the role of triangular norms. To appear | Zbl
[22] Piasecki K.: Probability of fuzzy events defined as denumerable additivity measure. Fuzzy Sets and Systems 17 (1985), 271–284 | DOI | MR | Zbl
[23] Pták P., Pulmannová S.: Orthomodular Structures as Quantum Logics. Kluwer Academic Publishers, Dordrecht – Boston – London 1991 | MR
[24] Pták P., Pulmannová S.: A measure–theoretic characterization of Boolean algebras among orthomodular lattices. Comment. Math. Univ. Carolin. 35 (1994), 205–208 | MR | Zbl
[25] Pykacz J.: Fuzzy set ideas in quantum logics. Internat. J. Theoret. Phys. 31 (1992), 1765–1781 | DOI | MR | Zbl
[26] Salvati S.: A characterization of Boolean algebras. Ricerche Mat. 43 (1994), 357–363 | MR | Zbl
[27] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North–Holland, New York 1983 | MR | Zbl