Keywords: uncertainty; total coherence; set-valued probability
@article{KYB_1998_34_1_a1,
author = {Gilio, Angelo and Ingrassia, Salvatore},
title = {Totally coherent set-valued probability assessments},
journal = {Kybernetika},
pages = {3--15},
year = {1998},
volume = {34},
number = {1},
mrnumber = {1619051},
zbl = {1274.68525},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1998_34_1_a1/}
}
Gilio, Angelo; Ingrassia, Salvatore. Totally coherent set-valued probability assessments. Kybernetika, Tome 34 (1998) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/KYB_1998_34_1_a1/
[1] Adams E. W.: The Logic of Conditionals. D. Reidel, Dordrecht 1975 | MR | Zbl
[2] Capotorti A., Vantaggi B.: The consistency problem in belief and probability assessments. In: Proceedings of the Sixth International Conference on “Information Processing and Management of Uncertainty in Knowledge-Based Systems” (IPMU ’96), Granada 1996, pp. 55–59
[3] Coletti G.: Numerical and qualitative judgements in probabilistic expert systems. In: Proceedings of the International Workshop on “Probabilistic Methods in Expert Systems” (R. Scozzafava, ed.), SIS, Roma 1993, pp. 37–55
[4] Coletti G.: Coherent numerical and ordinal probabilistic assessments. IEEE Trans. Systems Man Cybernet. 24 (1994), 12, 1747–1754 | DOI | MR
[5] Coletti G., Gilio A., Scozzafava R.: Conditional events with vague information in expert systems. In: Uncertainty in Knowledge Bases (Lecture Notes in Computer Science 521; B. Bouchon–Meunier, R. R. Yager, L. A. Zadeh, eds.), Springer–Verlag, Berlin – Heidelberg 1991, pp. 106–114 | Zbl
[6] Coletti G., Gilio A., Scozzafava R.: Comparative probability for conditional events: a new look through coherence. Theory and Decision 35 (1993), 237–258 | DOI | MR | Zbl
[7] Coletti G., Scozzafava R.: Learning from data by coherent probabilistic reasoning. In: Proceedings of ISUMA-NAFIPS ’95, College Park 1995, pp. 535–540
[8] Coletti G., Scozzafava R.: Characterization of coherent conditional probabilities as a tool for their assessment and extension. J. Uncertainty, Fuzziness and Knowledge–Based Systems 4 (1996), 2, 103–127 | DOI | MR | Zbl
[9] Biase G. Di, Maturo A.: Checking the coherence of conditional probabilities in expert systems: remarks and algorithms. In: Mathematical Models for Handling Partial Knowledge in Artificial Intelligence (G. Coletti, D. Dubois and R. Scozzafava, eds.), Plenum Press, New York 1995, pp. 191–200 | MR | Zbl
[10] Doria S., Maturo A.: A hyperstructure of conditional events for Artificial Intelligence. In: Mathematical Models for Handling Partial Knowledge in Artificial Intelligence (G. Coletti, D. Dubois and R. Scozzafava, eds.), Plenum Press, New York 1995, pp. 201–208 | MR | Zbl
[11] Dubois D., Prade H.: Probability in automated reasoning: from numerical to symbolic approaches. In: Probabilistic Methods in Expert Systems, Proc. of the International Workshop (R. Scozzafava, ed.), SIS, Roma 1993, pp. 79–104
[12] Holzer S.: On coherence and conditional prevision. Boll. Un. Mat. Ital. 4 (1985), 4–B, 441–460 | MR | Zbl
[13] Gilio A.: Criterio di penalizzazione e condizioni di coerenza nella valutazione soggettiva della probabilità. Boll. Un. Mat. Ital. 7 (1990), 4–B, 645–660
[14] Gilio A.: Conditional events and subjective probability in management of uncertainty. In: Uncertainty in Intelligent Systems (B. Bouchon–Meunier, L. Valverde and R. R. Yager, eds.), Elsevier Science Publishing B. V., North–Holland, 1993, pp. 109–120
[15] Gilio A.: Probabilistic consistency of conditional probability bounds. In: Advances in Intelligent Computing – IPMU’94 (Lecture Notes in Computer Science 945; B. Bouchon–Meunier, R. R. Yager and L. A. Zadeh, eds.), Springer–Verlag, Berlin – Heidelberg 1995, pp. 200–209
[16] Gilio A.: Algorithms for precise and imprecise conditional probability assessments. In: Mathematical Models for Handling Partial Knowledge in Artificial Intelligence (G. Coletti, D. Dubois and R. Scozzafava, eds.), Plenum Press, New York 1995, pp. 231–254 | MR | Zbl
[17] Gilio A.: Algorithms for conditional probability assessments. In: Bayesian Analysis in Statistics and Econometrics (D. A. Berry, K. M. Chaloner and J. K. Geweke, eds.), J. Wiley, New York 1996, pp. 29–39 | MR
[18] Gilio A., Ingrassia S.: Geometrical aspects in checking coherence of probability assessments. In: Proceedings of the Sixth International Conference on “Information Processing and Management of Uncertainty in Knowledge–Based Systems” (IPMU’96), Granada, 1996, pp. 55–59
[19] Gilio A., Scozzafava R.: Le probabilità condizionate coerenti nei sistemi esperti In: Ricerca Operativa e Intelligenza Artificiale, Atti Giornate di Lavoro A. I.R.O., IBM, Pisa 1988, pp. 317–330
[20] Goodman I. R., Nguyen H. T.: Conditional objects and the modeling of uncertainties. In: Fuzzy Computing Thoery, Hardware and Applications (M. M. Gupta and T. Yamakawa, eds.), North–Holland, New York 1988, pp. 119–138 | MR
[21] Lad F.: Coherent prevision as a linear functional without an underlying measure space: the purely arithmetic structure of logical relations among conditional quantities. In: Mathematical Models for Handling Partial Knowledge in Artificial Intelligence (G. Coletti, D. Dubois and R. Scozzafava, eds.), Plenum Press, New York 1995, pp. 101–111 | MR | Zbl
[22] Regoli G.: Comparative probability assessments and stochastic independence. In: Proceedings of the Sixth International Conference on “Information Processing and Management of Uncertainty in Knowledge–Based Systems” (IPMU’96), Granada 1996, pp. 49–53
[23] Scozzafava R.: How to solve some critical examples by a proper use of coherent probability. In: Uncertainty in Intelligent Systems (B. Bouchon–Meunier, L. Valverde and R. R. Yager, eds.), Elsevier Science Publishing B.V., North–Holland, Amsterdam 1993, pp. 121–132
[24] Scozzafava R.: Subjective probability versus belief functions in artificial intelligence. Internat. J. Gen. Systems 22 (1994), 197–206 | DOI | Zbl
[25] Vicig P.: An algorithm for imprecise conditional probability assessments in expert systems. In: Proceedings of the Sixth International Conference on “Information Processing and Management of Uncertainty in Knowledge–Based Systems” (IPMU’96), Granada 1996, pp. 61–66
[26] Walley P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London 1991 | MR | Zbl