@article{KYB_1997_33_6_a3,
author = {Mariel, Petr},
title = {A dynamic model of advertising competition: an empirical analysis of feedback strategies},
journal = {Kybernetika},
pages = {633--648},
year = {1997},
volume = {33},
number = {6},
mrnumber = {1602368},
zbl = {0923.90097},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1997_33_6_a3/}
}
Mariel, Petr. A dynamic model of advertising competition: an empirical analysis of feedback strategies. Kybernetika, Tome 33 (1997) no. 6, pp. 633-648. http://geodesic.mathdoc.fr/item/KYB_1997_33_6_a3/
[1] P. K. Chintagunta, D. C. Jain: Empirical analysis of a dynamic duopoly model of competition. J. Econom. Management Strategy 4 (1995), 109-131.
[2] P. K. Chintagunta, N. J. Vilcassim: An empirical investigation of advertising strategies in a dynamic duopoly. Management Sci. 38 (1992), 1230-1244. | Zbl
[3] F. C. Christ: Simultaneous Equations Estimation. Edward Elgar Publishing Company, 1994.
[4] K. R. Deal: Optimizing advertising expenditures in a dynamic duopoly. Oper. Res. 27 (1979), 682-692. | Zbl
[5] K. Deal S. Sethi, G. Thomson: A Bilinear-Quadratic Differential Game in Advertising. (Lecture Notes in Pure and Applied Mathematics 47.) Marcel Dekker, New York 1979, pp. 91-109. | MR
[6] P. J. Dhrymes: A note on an efficient two-step estimator. J. Econometrics 2 (1974), 301-304. | Zbl
[7] P. J. Dhrymes, H. Erlat: Asymptotic properties of full information estimators in dynamic autoregressive simulatneous equation models. J. Econometrics 2 (1974), 247-259.
[8] P. J. Dhrymes, J. B. Taylor: On an efficient two-step estimator for dynamic simultaneous equations models with autoregressive errors. Internat. Econom. Rev. 17 (1976), 247-259. | MR | Zbl
[9] G. M. Erickson: A model of advertising competition. J. Marketing Research 12 (1985), 297-304.
[10] G. M. Erickson: Empirical analysis of closed-loop duopoly advertising strategies. Management Sci. 38 (1992), 1732-1749. | Zbl
[11] M. P. Espinosa, P. Mariel: Advertising in a dynamic duopoly. Politická Ekonomie 2 (1997), 245-260.
[12] M. P. Espinosa, P. Mariel: A model of optimal advertising expenditures in a dynamic duopoly. D.T. 97.03, UPV Facultad de CC.EE. y Empresariales, Bilbao 1997.
[13] R. C. Fair: The estimation of simultaneous equation models with lagged endogenous variables and first order serially correlated errors. Econometrica 38 (1970), 507-516. | Zbl
[14] R. C. Fair: Eficient estimation of simultaneous equations with auto-regressive errors by instrumental variables. Rev. Econom. Statist. 54 (1972), 444-449.
[15] C. Fershtman, M. I. Kamien: Dynamic duopolistic competition with sticky prices. Econometrica 55 (1987), 1151-1164. | MR | Zbl
[16] F. Gasmi J. J. Laffont, Q. Vuong: Econometric analysis of collusive behavior in a soft-drink market. J. of Econom. Management Strategy 1 (1992), 277-312.
[17] M. Hatanaka: An efficient two-step estimator for the dynamic adjustment model with autoregressive errors. J. Econometrics 2 (1974), 199-220. | Zbl
[18] M. Hatanaka: Several efficient two-step estimators for the dynamic simultaneous equations model with autoregressive disturbances. J. Econometrics 4 (1976), 189-204. | MR | Zbl
[19] J. A. Hausman: Specification tests in econometrics. Econometrica 46 (1978), 1251-127. | MR | Zbl
[20] S. Jørgensen: A survey of some differential games in advertising. J. Econom. Dynamics Control 4 (1982), 341-369. | MR
[21] S. Reynolds: Capacity investment, preemption and commitment in an infinite horizon model. Internat. Econom. Rev. 28 (1987), 69-88. | MR | Zbl
[22] S. Reynolds: Dynamic oligopoly with capacity adjustment costs. J. Econom. Dynamics Control 15 (1988), 491-514. | MR
[23] J. D. Sargan: The maximum likelihood estimation of econometric relationships with autoregressive residuals. Econometrica 29 (1961), 414-426. | MR
[24] P. S. Sethi: Dynamic optimal control models in advertising: A survey. SIAM Rev. 19 (1977), 685-725. | MR | Zbl
[25] G. Sorger: Competitive dynamic advertising. J. Econom. Dynamics Control 13 (1989), 55-80. | MR | Zbl
[26] A. Starr, Y. Ho: Nonzero-sum differential games. J. Optim. Theory Appl. 3 (1969), 184-208. | MR | Zbl