@article{KYB_1997_33_4_a4,
author = {Hoang, S. and Nguyen, T. L. and Baraille, R. and Talagrand, O.},
title = {Approximation approach for nonlinear filtering problem with time dependent noises. {I.} {Conditionally} optimal filter in the minimum mean square sense},
journal = {Kybernetika},
pages = {409--425},
year = {1997},
volume = {33},
number = {4},
mrnumber = {1471386},
zbl = {0910.93077},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1997_33_4_a4/}
}
TY - JOUR AU - Hoang, S. AU - Nguyen, T. L. AU - Baraille, R. AU - Talagrand, O. TI - Approximation approach for nonlinear filtering problem with time dependent noises. I. Conditionally optimal filter in the minimum mean square sense JO - Kybernetika PY - 1997 SP - 409 EP - 425 VL - 33 IS - 4 UR - http://geodesic.mathdoc.fr/item/KYB_1997_33_4_a4/ LA - en ID - KYB_1997_33_4_a4 ER -
%0 Journal Article %A Hoang, S. %A Nguyen, T. L. %A Baraille, R. %A Talagrand, O. %T Approximation approach for nonlinear filtering problem with time dependent noises. I. Conditionally optimal filter in the minimum mean square sense %J Kybernetika %D 1997 %P 409-425 %V 33 %N 4 %U http://geodesic.mathdoc.fr/item/KYB_1997_33_4_a4/ %G en %F KYB_1997_33_4_a4
Hoang, S.; Nguyen, T. L.; Baraille, R.; Talagrand, O. Approximation approach for nonlinear filtering problem with time dependent noises. I. Conditionally optimal filter in the minimum mean square sense. Kybernetika, Tome 33 (1997) no. 4, pp. 409-425. http://geodesic.mathdoc.fr/item/KYB_1997_33_4_a4/
[1] A. Albert: Regression and the Moore-Penrose Pseudoinverse. Academic Press, New York 1972. | MR | Zbl
[2] D. L. Alspach, H. W. Sorenson: Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Trans. Automat. Control AC-17 (1972), 4, 439-448. | Zbl
[3] B. D. O. Anderson, J. B. Moore: Optimal Filtering. Prentice-Hall, Englewood Cliffs, NJ 1979. | Zbl
[4] G. P. Box, G. M. Jenkins: Time Series Analysis. Holden-Day, San Francisco 1970. | Zbl
[5] R. S. Bucy, al: An Engineer's Guide to Building Nonlinear Filters. F. J. Seiler Research Lab., Project 7904-00-37, May 1972.
[6] G. Chavent: On the uniqueness of local minima for general abstract nonlinear least squares problems. Inverse Problems 4 (1988), 417-433. | MR | Zbl
[7] G. C. Goodwin, K. S. Sin: Adaptive Filtering and Control. Prentice-Hall, Englewood Cliffs, NJ 1984.
[8] S. Hoang R. Baraille O. Talagrand L. Nguyen, P. DeMey: Approximation approach for nonlinear filtering problem with time dependent noises. Part II: Stable nonlinear filters. Kybernetika 33 (1997), No. 5 (to appear). | MR
[9] S. Hoang P. DeMey O. Talagrand, R. Baraille: A new reduced-order adaptive filter for state estimation in high dimensional systems. In: Proc. IFAC Internat. Symp. Adaptive Systems in Control and Signal Processings (Cs. Banyasz, ed.), Budapest 1995, pp. 153-158, to appear in Automatica 33 (1997), No. 8. | MR
[10] P. J. Huber: Robust Statistics. Wiley, New York 1981. | MR | Zbl
[11] A. H. Jazwinski: Stochastic Processes and Filtering Theory. Academic Press, New York 1970. | Zbl
[12] V. V. Kondrachev, A. A. Kocheshkov: Filtering and analysis of linear sample-data control systems with nonparametric specification of correlated noises. Avtomat. i Telemekh. (1985), No. 6, 67-76. (In Russian.)
[13] A. Kowalski, D. Szynal: Filtering in discrete-time systems with state and observation noises correlated on a finite time interval. IEEE Trans. Automat. Control AC-31 (1986), 4, 381-384. | Zbl
[14] I. E. Kazakov, X. V. Malchikov: Approximate design of Pugachev's filters of specified complexity. Automat. Remote Control 42 (1981), 1309.
[15] F. L. Lewis: Optimal Estimation. Wiley, New York 1986. | MR | Zbl
[16] C. J. Masreliez, D. Martin: Robust Bayesian estimation for the linear model and robustifying the Kalman filter. IEEE Trans. Automat. Control AC-22 (1977), 3, 361-371. | MR | Zbl
[17] T. L. Nguyen, S. Hoang: On optimal filtering with correlated noises and singular correlation matrices. Automat. Remote Control 43 (1982), 5 (2), 660-669. | MR
[18] T. L. Nguyen, S. Hoang: Optimal adaptive smoothing with correlated noises. Automat. Remote Control 43 (1982), 7 (1), 887-895.
[19] T. L. Nguyen, S. Hoang: On one model of non-Markovian random process and its application to optimal estimation theory. Automat. Remote Control 43 (1982), 8 (1), 1021-1032. | MR
[20] T. L. Nguyen, S. Hoang: On solution of ill-posed optimal linear filtering with correlated noises. Automat. Remote Control 44 (1983), 4 (1), 453-466.
[21] B. T. Polyak, Ja. Z. Tsypkin: Robust identification. Automatica 16 (1980), 1, 53-63. | MR
[22] V. S. Pugachev: Estimation of variables and parameters in discrete-time nonlinear systems. Automat. Remote Control 40 (1979), 512-521. | MR | Zbl
[23] V. S. Pugachev: Conditionally optimal estimation in stochastic differential systems. Automatica 18 (1982), 685-696. | MR | Zbl
[24] V. S. Pugachev: Probability Theory and Mathematical Statistics for Engineers. Pergamon Press, New York 1984. | MR | Zbl
[25] V. S. Pugachev I. N. Sinitsyn, V. I. Shin: A software method of normal approximation in analysis of nonlinear stochastic systems. Avtomat. i Telemekh. (1987), No. 2, 62-67. (In Russian.) | MR
[26] G. T. Schmidt: Linear and nonlinear filtering techniques. In: Control and Dynamical Systems (C. T. Leondes, ed.), Academic Press, New York 1976. | MR | Zbl
[27] H. W. Sorenson: Survey on filtering techniques and stochastic control in dynamical systems. In: Control and Dynamical Systems (C. T. Leondes, ed.), Academic Press, New York 1976. | MR
[28] J. Sternby: On consistency for the method of least squares using martingale theory. IEEE Trans. Automat. Control AC-22 (1977), 3, 346-352. | MR | Zbl