Approximation approach for nonlinear filtering problem with time dependent noises. I. Conditionally optimal filter in the minimum mean square sense
Kybernetika, Tome 33 (1997) no. 4, pp. 409-425 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 93C10, 93C55, 93C99, 93E11, 93E25
@article{KYB_1997_33_4_a4,
     author = {Hoang, S. and Nguyen, T. L. and Baraille, R. and Talagrand, O.},
     title = {Approximation approach for nonlinear filtering problem with time dependent noises. {I.} {Conditionally} optimal filter in the minimum mean square sense},
     journal = {Kybernetika},
     pages = {409--425},
     year = {1997},
     volume = {33},
     number = {4},
     mrnumber = {1471386},
     zbl = {0910.93077},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1997_33_4_a4/}
}
TY  - JOUR
AU  - Hoang, S.
AU  - Nguyen, T. L.
AU  - Baraille, R.
AU  - Talagrand, O.
TI  - Approximation approach for nonlinear filtering problem with time dependent noises. I. Conditionally optimal filter in the minimum mean square sense
JO  - Kybernetika
PY  - 1997
SP  - 409
EP  - 425
VL  - 33
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_1997_33_4_a4/
LA  - en
ID  - KYB_1997_33_4_a4
ER  - 
%0 Journal Article
%A Hoang, S.
%A Nguyen, T. L.
%A Baraille, R.
%A Talagrand, O.
%T Approximation approach for nonlinear filtering problem with time dependent noises. I. Conditionally optimal filter in the minimum mean square sense
%J Kybernetika
%D 1997
%P 409-425
%V 33
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_1997_33_4_a4/
%G en
%F KYB_1997_33_4_a4
Hoang, S.; Nguyen, T. L.; Baraille, R.; Talagrand, O. Approximation approach for nonlinear filtering problem with time dependent noises. I. Conditionally optimal filter in the minimum mean square sense. Kybernetika, Tome 33 (1997) no. 4, pp. 409-425. http://geodesic.mathdoc.fr/item/KYB_1997_33_4_a4/

[1] A. Albert: Regression and the Moore-Penrose Pseudoinverse. Academic Press, New York 1972. | MR | Zbl

[2] D. L. Alspach, H. W. Sorenson: Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Trans. Automat. Control AC-17 (1972), 4, 439-448. | Zbl

[3] B. D. O. Anderson, J. B. Moore: Optimal Filtering. Prentice-Hall, Englewood Cliffs, NJ 1979. | Zbl

[4] G. P. Box, G. M. Jenkins: Time Series Analysis. Holden-Day, San Francisco 1970. | Zbl

[5] R. S. Bucy, al: An Engineer's Guide to Building Nonlinear Filters. F. J. Seiler Research Lab., Project 7904-00-37, May 1972.

[6] G. Chavent: On the uniqueness of local minima for general abstract nonlinear least squares problems. Inverse Problems 4 (1988), 417-433. | MR | Zbl

[7] G. C. Goodwin, K. S. Sin: Adaptive Filtering and Control. Prentice-Hall, Englewood Cliffs, NJ 1984.

[8] S. Hoang R. Baraille O. Talagrand L. Nguyen, P. DeMey: Approximation approach for nonlinear filtering problem with time dependent noises. Part II: Stable nonlinear filters. Kybernetika 33 (1997), No. 5 (to appear). | MR

[9] S. Hoang P. DeMey O. Talagrand, R. Baraille: A new reduced-order adaptive filter for state estimation in high dimensional systems. In: Proc. IFAC Internat. Symp. Adaptive Systems in Control and Signal Processings (Cs. Banyasz, ed.), Budapest 1995, pp. 153-158, to appear in Automatica 33 (1997), No. 8. | MR

[10] P. J. Huber: Robust Statistics. Wiley, New York 1981. | MR | Zbl

[11] A. H. Jazwinski: Stochastic Processes and Filtering Theory. Academic Press, New York 1970. | Zbl

[12] V. V. Kondrachev, A. A. Kocheshkov: Filtering and analysis of linear sample-data control systems with nonparametric specification of correlated noises. Avtomat. i Telemekh. (1985), No. 6, 67-76. (In Russian.)

[13] A. Kowalski, D. Szynal: Filtering in discrete-time systems with state and observation noises correlated on a finite time interval. IEEE Trans. Automat. Control AC-31 (1986), 4, 381-384. | Zbl

[14] I. E. Kazakov, X. V. Malchikov: Approximate design of Pugachev's filters of specified complexity. Automat. Remote Control 42 (1981), 1309.

[15] F. L. Lewis: Optimal Estimation. Wiley, New York 1986. | MR | Zbl

[16] C. J. Masreliez, D. Martin: Robust Bayesian estimation for the linear model and robustifying the Kalman filter. IEEE Trans. Automat. Control AC-22 (1977), 3, 361-371. | MR | Zbl

[17] T. L. Nguyen, S. Hoang: On optimal filtering with correlated noises and singular correlation matrices. Automat. Remote Control 43 (1982), 5 (2), 660-669. | MR

[18] T. L. Nguyen, S. Hoang: Optimal adaptive smoothing with correlated noises. Automat. Remote Control 43 (1982), 7 (1), 887-895.

[19] T. L. Nguyen, S. Hoang: On one model of non-Markovian random process and its application to optimal estimation theory. Automat. Remote Control 43 (1982), 8 (1), 1021-1032. | MR

[20] T. L. Nguyen, S. Hoang: On solution of ill-posed optimal linear filtering with correlated noises. Automat. Remote Control 44 (1983), 4 (1), 453-466.

[21] B. T. Polyak, Ja. Z. Tsypkin: Robust identification. Automatica 16 (1980), 1, 53-63. | MR

[22] V. S. Pugachev: Estimation of variables and parameters in discrete-time nonlinear systems. Automat. Remote Control 40 (1979), 512-521. | MR | Zbl

[23] V. S. Pugachev: Conditionally optimal estimation in stochastic differential systems. Automatica 18 (1982), 685-696. | MR | Zbl

[24] V. S. Pugachev: Probability Theory and Mathematical Statistics for Engineers. Pergamon Press, New York 1984. | MR | Zbl

[25] V. S. Pugachev I. N. Sinitsyn, V. I. Shin: A software method of normal approximation in analysis of nonlinear stochastic systems. Avtomat. i Telemekh. (1987), No. 2, 62-67. (In Russian.) | MR

[26] G. T. Schmidt: Linear and nonlinear filtering techniques. In: Control and Dynamical Systems (C. T. Leondes, ed.), Academic Press, New York 1976. | MR | Zbl

[27] H. W. Sorenson: Survey on filtering techniques and stochastic control in dynamical systems. In: Control and Dynamical Systems (C. T. Leondes, ed.), Academic Press, New York 1976. | MR

[28] J. Sternby: On consistency for the method of least squares using martingale theory. IEEE Trans. Automat. Control AC-22 (1977), 3, 346-352. | MR | Zbl