@article{KYB_1997_33_4_a2,
author = {Oh, Myoungho and Choi, U Jin},
title = {The damped modified iterated {Kalman} filter for nonlinear discrete time systems},
journal = {Kybernetika},
pages = {387--398},
year = {1997},
volume = {33},
number = {4},
mrnumber = {1471384},
zbl = {0915.93061},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1997_33_4_a2/}
}
Oh, Myoungho; Choi, U Jin. The damped modified iterated Kalman filter for nonlinear discrete time systems. Kybernetika, Tome 33 (1997) no. 4, pp. 387-398. http://geodesic.mathdoc.fr/item/KYB_1997_33_4_a2/
[1] M. B. Bell, F. W. Cathey: The iterated Kalman filter update as a Gauss-Newton method. IEEE Trans. Automat. Control 38 (1993), 2, 294-297. | MR | Zbl
[2] D. E. Catlin: Estimation, Control, and the Discrete Kalman Filter. Springer-Verlag, New York 1989. | MR | Zbl
[3] S. D. Conte, C. de Boor: Elementary Numerical Analysis. McGraw- Hill, Singapore 1987.
[4] A. Gelb: Applied Optimal Estimation. MIT Press, Cambridge, Massachusetts 1974. | MR
[5] Y. Hosoya, M. Taniguchi: A central limit theorem for stationary processes and the parameter estimation of linear processes. Ann. Statist. 10 (1982), 1, 132-153. | MR | Zbl
[6] D. Kincaid, W. Cheney: Numerical Analysis: Mathematics of Scientific Computing. Brooks/Cole Publishing Company, California 1990. | MR
[7] L. Ljung: Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems. IEEE Trans. Automat. Control AC-24 (1979), 1, 36-50. | MR | Zbl
[8] N. E. Nahi: Estimation Theory and Applications. Wiley, New York 1969.
[9] M. D. Smooke: Error estimate for the modified Newton method with application to the solution of nonlinear, two-point boundary-value problems. J. Optim. Theory Appl. 39 (1983), 4, 489-511. | MR
[10] F. Szidarovszky, S. Yakowitz: Principles and Procedures of Numerical Analysis. Plenum Press, New York 1978. | MR | Zbl