A geometric proof of Rosenbrock's theorem on pole assignment
Kybernetika, Tome 33 (1997) no. 4, pp. 357-370 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 93B10, 93B27, 93B29, 93B55
@article{KYB_1997_33_4_a0,
     author = {Bonilla E., Mois\'es and Loiseau, Jean-Jacques and Baquero S., Rafael},
     title = {A geometric proof of {Rosenbrock's} theorem on pole assignment},
     journal = {Kybernetika},
     pages = {357--370},
     year = {1997},
     volume = {33},
     number = {4},
     mrnumber = {1471382},
     zbl = {0949.93028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1997_33_4_a0/}
}
TY  - JOUR
AU  - Bonilla E., Moisés
AU  - Loiseau, Jean-Jacques
AU  - Baquero S., Rafael
TI  - A geometric proof of Rosenbrock's theorem on pole assignment
JO  - Kybernetika
PY  - 1997
SP  - 357
EP  - 370
VL  - 33
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_1997_33_4_a0/
LA  - en
ID  - KYB_1997_33_4_a0
ER  - 
%0 Journal Article
%A Bonilla E., Moisés
%A Loiseau, Jean-Jacques
%A Baquero S., Rafael
%T A geometric proof of Rosenbrock's theorem on pole assignment
%J Kybernetika
%D 1997
%P 357-370
%V 33
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_1997_33_4_a0/
%G en
%F KYB_1997_33_4_a0
Bonilla E., Moisés; Loiseau, Jean-Jacques; Baquero S., Rafael. A geometric proof of Rosenbrock's theorem on pole assignment. Kybernetika, Tome 33 (1997) no. 4, pp. 357-370. http://geodesic.mathdoc.fr/item/KYB_1997_33_4_a0/

[1] P. Brunovský: A classification of linear controllable systems. Kybernetika 6 (1970), 3, 173-188. | MR

[2] T. Brylawski: The lattice of integer partitions. Discrete Math. 6 (1973), 201-219. | MR | Zbl

[3] B. W. Dickinson: On the fundamental theorem of linear state variable feedback. IEEE Trans. Automat. Control AC-19 (1974), 577-579. | MR | Zbl

[4] D. S. Flamm: A new proof of Rosenbrock's theorem on pole assignment. IEEE Trans. Automat. Control AC-25 (1980), 6, 1126-1133. | MR | Zbl

[5] F. R. Gantmacher: The Theory of Matrices. Vol. I. Chelsea Publishing Co., New York 1977.

[6] T. Kailath: Linear Systems. Prentice-Hall, Inc. Englewood Cliffs, N. J. 1980. | MR | Zbl

[7] V. Kučera: Assigning the invariant factors by feedback. Kybernetika 17 (1981), 118-127. | MR

[8] J. J. Loiseau: Sur la Modification de la Structure à l'lnfini par un Retour d'Etat Statique. SIAM J. Control Optim. 26 (1988), 2, 251-273. | MR

[9] J. J. Loiseau K. Özçaldiran M. Malabre, N. Karcanias: Feedback canonical forms of singular systems. Kybernetika 27 (1991), 4, 289-305. | MR

[10] K. Özçaldiran: Fundamental theorem of linear state feedback for singular systems. In: Proceedings of the 29th CDC, Honolulu 1990, pp. 67-72.

[11] H. H. Rosenbrock: State Space and Multivariable Theory. Wiley, New York 1970. | MR | Zbl

[12] W. M. Wonham: Linear Multivariable Control: A Geometric Approach. Springer-Verlag, New York 1985. | MR | Zbl

[13] I. Zaballa: Matrices with prescribed rows and invariant factors. Linear Algebra Appl. 87 (1987), 113-146. | MR | Zbl

[14] P. Zagalak, V. Kučera: Eigenstructure assignment in linear descriptor systems. In: Proceedings of the European Control Conference ECC'91, Grenoble 1991, pp. 409-414.

[15] P. Zagalak, J. J. Loiseau: Invariant factors assignment in linear systems. In: Proceedings of the Symposium on Implicit and Nonlinear Systems, Fort Worth 1992, pp. 197-204.