@article{KYB_1997_33_3_a1,
author = {Fabi\'an, Zden\v{e}k},
title = {On the relation between gnostical and probability theories},
journal = {Kybernetika},
pages = {259--270},
year = {1997},
volume = {33},
number = {3},
mrnumber = {1463608},
zbl = {0997.62508},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1997_33_3_a1/}
}
Fabián, Zdeněk. On the relation between gnostical and probability theories. Kybernetika, Tome 33 (1997) no. 3, pp. 259-270. http://geodesic.mathdoc.fr/item/KYB_1997_33_3_a1/
[1] S. Amari: Differential--Geometrical Methods in Statistics. (Lecture Notes in Statistics 28.) Springer-Verlag, Berlin--Heidelberg--New York 1985. | MR | Zbl
[2] T. M. Cover, J. A. Thomas: Elements of Information Theory. Wiley, New York--London 1991. | MR | Zbl
[3] Z. Fabián: Point estimation in case of small data sets. In: Trans. 10th Prague Conf. on Inform. Theory, Statist. Dec. Functions, Random Processes, Academia, Prague 1988, pp. 305-312. | MR
[4] Z. Fabián: Generalized score function and its use. In: Trans. 12th Prague Conf. on Inform. Theory, Statist. Dec. Functions, Random Processes, ÚTIA AV ČR, Prague 1994.
[5] Z. Fabián: Information and entropy of continuous random variables. IEEE Trans. Inform. Theory 43 (1997), 3. | MR
[6] Z. Fabián: Geometric Moments. Techn. Report No. V-699, ICS AS CR, Prague 1996.
[7] Z. Fabián: Geometric moments. In: Trans. ROBUST'96, JČMF, Prague 1997. (In Czech.)
[8] F. R. Hampel P. J. Rousseeuw E. M. Ronchetti, W. A. Stahel: Robust Statistic. The Approach Based on Influence Functions. Wiley, New York 1987. | MR
[9] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry. Interscience Publishers, New York--London 1963. | MR | Zbl
[10] P. Kovanic: Gnostical theory of individual data. Problems Control Inform. Theory 13 (1984), 4, 259-274. | MR | Zbl
[11] P. Kovanic: Gnostical theory of small samples of real data. Problems Control Inform. Theory 13 (1984), 5, 303-319. | MR | Zbl
[12] P. Kovanic: On relation between information and physics. Problems Control Inform. Theory 13 (1984), 6, 383-399.
[13] P. Kovanic: A new theoretical and algorithmical tool for estimation, identification and control. Automatica 22 (1986), 6, 657-674.
[14] P. Kovanic, J. Novovičová: Comparizon of statistical and gnostical estimates of parameter of location on real data. In: Proc. of ROBUST, JČMF, Prague 1986. (In Czech.)
[15] J. Novovičová: M-estimators and gnostical estimators of location. Problems Control Inform. Theory 18 (1989), 6, 397-407. | MR
[16] G. P. Patil M. T. Boswell, M. V. Ratnaparkhi: Dictionary and classified bibliography of statistical distributions in scientific work. In: Internat. Co-operative Publ. House, Maryland 1984.
[17] A. P. Prudnikov J. A. Brychkov, O. I. Marichev: Integrals and Series. Nauka, Moskva 1981. (In Russian.) | MR
[18] S. M. Stiegler: Do robust estimators work with real data?. Ann. Statist. 6 (1977), 1055-1098. | MR
[19] I. Vajda: Efficiency and robustness control via distorted maximum likelihood estimation. Kybernetika 22 (1986), 1, 47-67. | MR | Zbl
[20] I. Vajda: Minimum-distance and gnostical estimators. Problems Control Inform. Theory 17 (1987), 5, 253-266. | MR
[21] I. Vajda: Comparison of asymptotic variances for several estimators of location. Problems Control Inform. Theory 18 (1989), 2, 79-87. | MR | Zbl