On the relation between gnostical and probability theories
Kybernetika, Tome 33 (1997) no. 3, pp. 259-270 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62A01, 62A99, 62B10, 62F99
@article{KYB_1997_33_3_a1,
     author = {Fabi\'an, Zden\v{e}k},
     title = {On the relation between gnostical and probability theories},
     journal = {Kybernetika},
     pages = {259--270},
     year = {1997},
     volume = {33},
     number = {3},
     mrnumber = {1463608},
     zbl = {0997.62508},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1997_33_3_a1/}
}
TY  - JOUR
AU  - Fabián, Zdeněk
TI  - On the relation between gnostical and probability theories
JO  - Kybernetika
PY  - 1997
SP  - 259
EP  - 270
VL  - 33
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1997_33_3_a1/
LA  - en
ID  - KYB_1997_33_3_a1
ER  - 
%0 Journal Article
%A Fabián, Zdeněk
%T On the relation between gnostical and probability theories
%J Kybernetika
%D 1997
%P 259-270
%V 33
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1997_33_3_a1/
%G en
%F KYB_1997_33_3_a1
Fabián, Zdeněk. On the relation between gnostical and probability theories. Kybernetika, Tome 33 (1997) no. 3, pp. 259-270. http://geodesic.mathdoc.fr/item/KYB_1997_33_3_a1/

[1] S. Amari: Differential--Geometrical Methods in Statistics. (Lecture Notes in Statistics 28.) Springer-Verlag, Berlin--Heidelberg--New York 1985. | MR | Zbl

[2] T. M. Cover, J. A. Thomas: Elements of Information Theory. Wiley, New York--London 1991. | MR | Zbl

[3] Z. Fabián: Point estimation in case of small data sets. In: Trans. 10th Prague Conf. on Inform. Theory, Statist. Dec. Functions, Random Processes, Academia, Prague 1988, pp. 305-312. | MR

[4] Z. Fabián: Generalized score function and its use. In: Trans. 12th Prague Conf. on Inform. Theory, Statist. Dec. Functions, Random Processes, ÚTIA AV ČR, Prague 1994.

[5] Z. Fabián: Information and entropy of continuous random variables. IEEE Trans. Inform. Theory 43 (1997), 3. | MR

[6] Z. Fabián: Geometric Moments. Techn. Report No. V-699, ICS AS CR, Prague 1996.

[7] Z. Fabián: Geometric moments. In: Trans. ROBUST'96, JČMF, Prague 1997. (In Czech.)

[8] F. R. Hampel P. J. Rousseeuw E. M. Ronchetti, W. A. Stahel: Robust Statistic. The Approach Based on Influence Functions. Wiley, New York 1987. | MR

[9] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry. Interscience Publishers, New York--London 1963. | MR | Zbl

[10] P. Kovanic: Gnostical theory of individual data. Problems Control Inform. Theory 13 (1984), 4, 259-274. | MR | Zbl

[11] P. Kovanic: Gnostical theory of small samples of real data. Problems Control Inform. Theory 13 (1984), 5, 303-319. | MR | Zbl

[12] P. Kovanic: On relation between information and physics. Problems Control Inform. Theory 13 (1984), 6, 383-399.

[13] P. Kovanic: A new theoretical and algorithmical tool for estimation, identification and control. Automatica 22 (1986), 6, 657-674.

[14] P. Kovanic, J. Novovičová: Comparizon of statistical and gnostical estimates of parameter of location on real data. In: Proc. of ROBUST, JČMF, Prague 1986. (In Czech.)

[15] J. Novovičová: M-estimators and gnostical estimators of location. Problems Control Inform. Theory 18 (1989), 6, 397-407. | MR

[16] G. P. Patil M. T. Boswell, M. V. Ratnaparkhi: Dictionary and classified bibliography of statistical distributions in scientific work. In: Internat. Co-operative Publ. House, Maryland 1984.

[17] A. P. Prudnikov J. A. Brychkov, O. I. Marichev: Integrals and Series. Nauka, Moskva 1981. (In Russian.) | MR

[18] S. M. Stiegler: Do robust estimators work with real data?. Ann. Statist. 6 (1977), 1055-1098. | MR

[19] I. Vajda: Efficiency and robustness control via distorted maximum likelihood estimation. Kybernetika 22 (1986), 1, 47-67. | MR | Zbl

[20] I. Vajda: Minimum-distance and gnostical estimators. Problems Control Inform. Theory 17 (1987), 5, 253-266. | MR

[21] I. Vajda: Comparison of asymptotic variances for several estimators of location. Problems Control Inform. Theory 18 (1989), 2, 79-87. | MR | Zbl