Decomposition in stereological unfolding problems
Kybernetika, Tome 33 (1997) no. 3, pp. 245-258 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 60D05, 60K35
@article{KYB_1997_33_3_a0,
     author = {Bene\v{s}, Viktor and Krej\v{c}{\'\i}\v{r}, Pavel},
     title = {Decomposition in stereological unfolding problems},
     journal = {Kybernetika},
     pages = {245--258},
     year = {1997},
     volume = {33},
     number = {3},
     mrnumber = {1463607},
     zbl = {0912.60025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1997_33_3_a0/}
}
TY  - JOUR
AU  - Beneš, Viktor
AU  - Krejčíř, Pavel
TI  - Decomposition in stereological unfolding problems
JO  - Kybernetika
PY  - 1997
SP  - 245
EP  - 258
VL  - 33
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1997_33_3_a0/
LA  - en
ID  - KYB_1997_33_3_a0
ER  - 
%0 Journal Article
%A Beneš, Viktor
%A Krejčíř, Pavel
%T Decomposition in stereological unfolding problems
%J Kybernetika
%D 1997
%P 245-258
%V 33
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1997_33_3_a0/
%G en
%F KYB_1997_33_3_a0
Beneš, Viktor; Krejčíř, Pavel. Decomposition in stereological unfolding problems. Kybernetika, Tome 33 (1997) no. 3, pp. 245-258. http://geodesic.mathdoc.fr/item/KYB_1997_33_3_a0/

[1] A. Baddeley, L. M. Cruz-Orive: The Rao-Blackwell theorem in stereology and some counterexamples. Adv. in Appl. Probab. 27 (1995), 2-19. | MR | Zbl

[2] V. Beneš A. M. Gokhale, M. Slámova: Unfolding the bivariate size-orientation distribution. Acta Stereol. 15, (1996), 1, 9-14.

[3] R. Coleman: Inverse problems. J. Microsc. 153 (1989), 3, 233-248.

[4] L. M. Cruz-Orive: Particle size-shape distributions: The general spheroid problem, I., II. J. Microsc. 107 (1976), 3, 235-253, 112 (1978), 153-167.

[5] W. Gerlach, J. Ohser: On the accurancy of numerical solutions for some stereological problems as the Wicksell corpuscule problem. J. Biomath. 28 (1986), 7, 881-887. | MR

[6] A. M. Gokhale: Estimation of bivariate size and orientation distribution of microcracks. Acta Metall. and Mater. 44 (1996), 2, 475-485.

[7] I. S. Gradshtejn, I. M. Ryzhik: Tables of Integrals, Sums, Series and Products. GIFML Moscow 1963. (In Russian.)

[8] L. M. Karlsson, L. M. Cruz-Orive: The new stereological tools in metallography: estimation of pore size and number in aluminium. J. Microscopy 165 (1992), 3, 391-415.

[9] A. Kleinwachter, M. Zähle: Size distribution stereology for quasiellipsoids in $R^n$. Math. Oper. Stat. 17 (1986), 332-335. | MR

[10] P. Mikusinski H. Sherwood, M. D. Taylor: Probabilistic interpretations of copulas and their convex sums. In: Advances in Probability Distributions with Given Marginals (Dall'Aglio et al, eds.), Kluwer Acad. Publ., Dordrecht 1991, pp. 95-112. | MR

[11] J. Møller: Stereological analysis of particles of varying ellipsoidal shape. J. Appl. Probab. 25 (1988), 322-335. | MR

[12] J. Ohser, F. Mücklich: Stereology for some classes of polyhedrons. Adv. in Appl. Probab. 27 (1995), 2, 384-96. | MR

[13] B. W. Silvermann M. C. Jones D. W. Nychka, J. D. Wilson: A smoothed EM approach to indirect estimation problems, with particular reference to stereology and emission tomography. J. Roy. Statist. Soc. Ser. B 52 (1990), 271-324. | MR

[14] C. van Putten, J. H. van Schuppen: Invariance properties of the conditional independence relation. Ann. Probab. 13 (1985), 3, 934-945. | MR | Zbl

[15] S. D. Wicksell: The corpuscule problem. A mathematical study of a biometrical problem. Biometrika 17 (1925), 84-88.