Error bounds for arbitrary approximations of “nearly reversible” Markov chains and a communications example
Kybernetika, Tome 33 (1997) no. 2, pp. 171-184 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 60J20
@article{KYB_1997_33_2_a2,
     author = {van Dijk, Nico M.},
     title = {Error bounds for arbitrary approximations of {\textquotedblleft}nearly reversible{\textquotedblright} {Markov} chains and a communications example},
     journal = {Kybernetika},
     pages = {171--184},
     year = {1997},
     volume = {33},
     number = {2},
     mrnumber = {1454277},
     zbl = {0914.60040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1997_33_2_a2/}
}
TY  - JOUR
AU  - van Dijk, Nico M.
TI  - Error bounds for arbitrary approximations of “nearly reversible” Markov chains and a communications example
JO  - Kybernetika
PY  - 1997
SP  - 171
EP  - 184
VL  - 33
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_1997_33_2_a2/
LA  - en
ID  - KYB_1997_33_2_a2
ER  - 
%0 Journal Article
%A van Dijk, Nico M.
%T Error bounds for arbitrary approximations of “nearly reversible” Markov chains and a communications example
%J Kybernetika
%D 1997
%P 171-184
%V 33
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_1997_33_2_a2/
%G en
%F KYB_1997_33_2_a2
van Dijk, Nico M. Error bounds for arbitrary approximations of “nearly reversible” Markov chains and a communications example. Kybernetika, Tome 33 (1997) no. 2, pp. 171-184. http://geodesic.mathdoc.fr/item/KYB_1997_33_2_a2/

[1] T. Altiok, H. G. Perros: Queueing Networks with Blocking. North Holland, Amsterdam 1989. | MR | Zbl

[2] V. E. Beneš: A thermodynamic theory of traffic in connecting network. Bell System Technical Journal VLII (1963), 3, 567-607. | MR

[3] V. E. Beneš: Mathematical Theory of Connecting Networks and Telephone Traffic. Academic Press, New York 1965. | MR

[4] P. J. Curtois: Decomposability: Queueing and Computer System Application. Academic Press, New York 1977. | MR

[5] P. J. Curtois, P. Semal: Bounds and conditional steady-state distribution in large Markovian and queueing models. In: Teletraffic Analalysis and Computer Performance Evaluation (O. J. Boxma, J. W. Cohen and H. C. Tijms, eds.), North Holland, Amsterdam 1986.

[6] A. Hordijk, A. Ridder: Insensitive bounds for the stationary distribution on nonreversible Markov chains. J. Appl. Probab. 25 (1988), 9-20. | MR

[7] A. Hordijk, N. M. van Dijk: Networks of queues. Part I: Job-local balance and the adjoint process. Part II: General routing and service characteristics. Lecture Notes in Control and Inform. Sci. 60 (1983), 158-205.

[8] F. P. Kelly: Reversibility and Stochastic Networks. Wiley, New York 1979. | MR | Zbl

[9] J. G. Kemeny J. L. Snell, A. W. Knapp: Denumerable Markov Chains. Van Nostrand, Princeton N. J. 1966. | MR

[10] C. D. Meyer: The condition of finite Markov chain and perturbation bounds for the limiting probabilities. SIAM J. Algebraic Discrete Methods 1 (1980), 273-283. | MR

[11] R. R. Muntz E. De Souza e Silva, A. Goyal: Bounding availability of repairable computer systems. Performance Evaluation 17 (1989), 29-38. | MR

[12] J. K. Muppala, K. S. Trivedi: Numerical Transient Solution of Finite Markovian Systems. Research Report, Duke University 1990.

[13] R. Nelson, L. Kleinrock: Rude--CSMA: A multihop channel access protocol. IEEE Trans. Comm. COM 33 (1985), 8, 785-791. | MR | Zbl

[14] E. Pinsky, Y. Yemini: A statistical mechanics of some interconnection networks. In: Performance'84, Elsevier, North Holland, Amsterdam 1984. | MR

[15] P. J. Schweitzer: Perturbation theory and undiscounted Markov renewal programming. Oper. Res. 17 (1969), 716-727. | MR | Zbl

[16] E. Seneta: Sensitivity to perturbation of the stationary distribution: Some refinements. Linear Algebra Appl. 108 (1988), 121-126. | MR | Zbl

[17] W. J. Stewart (ed.): Numerical Solutions of Markov Chains. Marcel Dekker, New York 1990. | MR

[18] H. C. Tijms: Stochastic Modelling and Analysis. Wiley, New York 1986. | MR

[19] J. van der Wal, P. J. Schweitzer: Iterative bounds on the equilibrium distribution of a finite Markov chain. Probab. in Engng. Inform. Sci. 1 (1987), 117-131. | Zbl

[20] N. M. van Dijk: On the importance of bias terms for error bounds and comparison results. In: Numerical Solutions of Markov Chains (W. J. Stewart, ed.), Marcel Dekker, New York 1991, pp. 618-647. | MR

[21] N. M. van Dijk: Approximate uniformization for continuous-time Markov chains with an application to performability analysis. Stochastic Process. Appl. 40 (1992), 339-357. | MR | Zbl

[22] N. M. van Dijk, M. L. Puterman: Perturbation theory for Markov reward processes with applications to queueing. Adv. in Appl. Probab. 20 (1988), 78-99. | MR | Zbl

[23] N. M. van Dijk, J. P. Veltkamp: Product form for stochastic interference systems. Probab. in Engng. Inform. Sci. 2 (1988), 355-376.

[24] J. P. Veltkamp: Cost Functions for Interference Systems and VLSI High-level Synthesis. Ph. D. Thesis. Twente University 1988.

[25] B. S. Yoon, B. S. Shanthikumar: Bounds and approximations for the transient behaviour of continuous-time Markov chains. Probab. in Engng. Inform. Sci. 3 (1989), 175-109.