Asymptotic results in parameter estimation for Gibbs random fields
Kybernetika, Tome 33 (1997) no. 2, pp. 135-159 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62F12, 62M40, 93E10
@article{KYB_1997_33_2_a0,
     author = {Jan\v{z}ura, Martin},
     title = {Asymptotic results in parameter estimation for {Gibbs} random fields},
     journal = {Kybernetika},
     pages = {135--159},
     year = {1997},
     volume = {33},
     number = {2},
     mrnumber = {1454275},
     zbl = {0962.62092},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1997_33_2_a0/}
}
TY  - JOUR
AU  - Janžura, Martin
TI  - Asymptotic results in parameter estimation for Gibbs random fields
JO  - Kybernetika
PY  - 1997
SP  - 135
EP  - 159
VL  - 33
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_1997_33_2_a0/
LA  - en
ID  - KYB_1997_33_2_a0
ER  - 
%0 Journal Article
%A Janžura, Martin
%T Asymptotic results in parameter estimation for Gibbs random fields
%J Kybernetika
%D 1997
%P 135-159
%V 33
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_1997_33_2_a0/
%G en
%F KYB_1997_33_2_a0
Janžura, Martin. Asymptotic results in parameter estimation for Gibbs random fields. Kybernetika, Tome 33 (1997) no. 2, pp. 135-159. http://geodesic.mathdoc.fr/item/KYB_1997_33_2_a0/

[1] J. Besag: Spatial interaction and the statistical analysis of lattice systems. J. Roy. Statist. Soc. B 36 (1974), 192-226. | MR | Zbl

[2] J. Besag: On the statistical analysis of dirty pictures (with discussion). J. Roy. Statist. Soc. Ser. B 48 (1986), 259-302. | MR | Zbl

[3] E. Bolthausen: On the central limit theorem for stationary mixing random fields. Ann. Probab. 10 (1982), 1047-1050. | MR | Zbl

[4] F. Comets: On consistency of a class of estimators for exponential families of Markov random fields on a lattice. Ann. Statist. 20 (1992), 455-468. | MR

[5] R. L. Dobrushin, B. S. Nahapetian: Strong convexity of the pressure for the lattice systems of classical statistical physics. Teor. Mat. Phys. 20 (1974), 223-234. | MR

[6] D. Geman, S. Geman: Maximum Entropy and Bayesian Methods in Sciences and Engineering. (C. R. Smith and G. J. Erickson, eds), Kluwer, Dordrecht 1988.

[7] S. Geman, C. Graffigne: Markov random field image models and their applications to computer vision. In: Proc. Internat. Congress Math. (A. M. Gleason ed.), Amer. Math. Soc, Providence, R. I. 1987. | MR | Zbl

[8] H. O. Georgii: Gibbs Measures and Phase Transitions. De Gruyter, Berlin 1988. | MR | Zbl

[9] B. Gidas: Consistency of maximum likelihood and pseudo-likelihood estimators for Gibbs distribution. In: Stochastic Differential Systems, Stochastic Control Theory, and Application (W. Fleming and P. L. Lions, eds., IMA Vol. Math. Appl. 10). Springer, New York 1988. | MR

[10] B. Gidas: Parameter estimation for Gibbs distributions. I. Fully observed data. In: Markov Random Fields: Theory and Applications (R. Chellapa and R. Jain, eds.), Academic Press, New York 1991.

[11] L. Gross: Absence of second-order phase transition in the Dobrushin's uniqueness region. J. Statist. Phys. 27 (1981), 57-72. | MR

[12] X. Guyon: Estimation d'un champ par pseudo-vraisemblance conditionnelle: Etude asymptotique et application au cas Markovien. In: Actes de la 6eme Rencontre Franco-Belge de Statisticiens, Bruxelles 1985.

[13] X. Guyon, H. R. Künsch: Asymptotic comparison of estimators in the Ising model. In: Stochastic Models, Statistical Methods, and Algorithms in Image Analysis (P. Barone, A. Frigessi and M. Piccioni, eds., Lecture Notes in Statistics 74), Springer, Berlin 1992, pp. 177-198. | MR

[14] J. Hájek: Local asymptotic minimax and admissibility in estimation. In: Proc. 6th Berkeley Symposium, Vol. 1, Berkeley, Calif. 1970, pp. 175-194. | MR

[15] F. R. Hampel E. M. Ronchetti P. J. Rousseeuw, W. A. Stahel: Robust Statistics -- The Approach Based on Influence Functions. Wiley, New York 1986. | MR

[16] M. Janžura: Estimating interactions in binary lattice data with nearest-neighbor property. Kybernetika 23 (1987), 2, 136-142. | MR

[17] M. Janžura: Statistical analysis of Gibbs random fields. In: Trans. 10th Prague Conf. on Inform. Theory, Stat. Dec. Functions, Random Processes 1986, Praha, pp. 429-438. | MR

[18] M. Janžura: Asymptotic theory of parameter estimation for Gauss-Markov random fields. Kybernetika 24 (1988), 161-176. | MR

[19] M. Janžura: Local asymptotic normality for Gibbs random fields. In: Proceedings of the Fourth Prague Symposium on Asymptotic Statistics (P. Mandl, M. Hušková, eds.), Charles University, Prague 1989, pp. 275-284. | MR

[20] M. Janžura, P. Lachout: A central limit theorem for stationary random fields. Math. Methods Statist. 4 (1995), 463-472. | MR

[21] H. R. Künsch: Thermodynamics and statistical analysis of Gaussian random fields. Z. Wahrsch. Verw. Gebiete 58 (1981), 407-421. | MR

[22] H. Künsch: Decay of correlations under Dobrushin's uniqueness condition and its applications. Commun. Math. Phys. 84 (1982), 207-222. | MR | Zbl

[23] H. Künsch: Infinitesimal robustness for autoregressive processes. Ann. Statist. 12 (1984), 843-863. | MR

[24] C. Preston: Random Fields. (Lecture Notes in Mathematics 534). Springer, Berlin 1976. | MR | Zbl

[25] D. J. Strauss: Analysing binary lattice data with the nearest-neighbor property. J. Appl. Probab. 12 (1975), 702-712. | MR | Zbl

[26] L. Younès: Estimation and annealing for Gibbsian fields. Ann. Inst. H. Poincaré Sect. B (N. S.) 24 (1988), 269-294. | MR

[27] L. Younès: Parametric inference for imperfectly observed Gibbsian fields. Probab. Theory Related Fields 82 (1989), 625-645. | MR