Controllability of retarded dynamical systems
Kybernetika, Tome 32 (1996) no. 6, pp. 591-600 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 93B05, 93C25
@article{KYB_1996_32_6_a5,
     author = {Klamka, Jerzy},
     title = {Controllability of retarded dynamical systems},
     journal = {Kybernetika},
     pages = {591--600},
     year = {1996},
     volume = {32},
     number = {6},
     mrnumber = {1438107},
     zbl = {1043.93509},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1996_32_6_a5/}
}
TY  - JOUR
AU  - Klamka, Jerzy
TI  - Controllability of retarded dynamical systems
JO  - Kybernetika
PY  - 1996
SP  - 591
EP  - 600
VL  - 32
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1996_32_6_a5/
LA  - en
ID  - KYB_1996_32_6_a5
ER  - 
%0 Journal Article
%A Klamka, Jerzy
%T Controllability of retarded dynamical systems
%J Kybernetika
%D 1996
%P 591-600
%V 32
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1996_32_6_a5/
%G en
%F KYB_1996_32_6_a5
Klamka, Jerzy. Controllability of retarded dynamical systems. Kybernetika, Tome 32 (1996) no. 6, pp. 591-600. http://geodesic.mathdoc.fr/item/KYB_1996_32_6_a5/

[1] A. Bensoussan G. Da Prato M. C. Delfour, S. K. Mitter: Representation and Control of Infinite Dimensional Systems. Vol. I and II. Birkhauser, Boston 1993. | MR

[2] G. Chen, D. R. Russell: A mathematical model for linear elastic systems with structural damping. Quart. J. Appl. Math. 39 (1982), 4, 433-454. | MR | Zbl

[3] J. Klamka: Controllability of dynamical systems with delays. Systems Sci. 8 (1982), 2-3, 205-212. | MR

[4] J. Klamka: Controllability of Dynamical Systems. Kluwer Academic Publishers, Dordrecht 1991. | MR | Zbl

[5] J. Klamka: Approximate controllability of second order dynamical systems. Appl. Math. Computer Sci. 2 (1992), 1, 135-146. | MR | Zbl

[6] J. Klamka: Constrained controllability of linear retarded dynamical systems. Appl. Math. Computer Sci. 3 (1993), 4, 647-672. | MR | Zbl

[7] J. Klamka: Controllability of dynamical systems -- a survey. Arch. Control Sci. 2 (1993), 3/4, 281-307. | MR | Zbl

[8] T. Kobayashi: Frequency domain conditions of controllability and observability for distributed parameter systems with unbounded control and observation. Internat. J. Systems Sci. 23 (1992), 2369-2376. | MR

[9] S. Nakagiri: On the fundamental solution of delay-differential equations in Banach spaces. J. Differential Equations 41 (1981), 349-368. | MR | Zbl

[10] S. Nakagiri: Optimal control of linear retarded systems in Banach spaces. J. Math. Anal. Appl. 120 (1986), 1, 169-210. | MR | Zbl

[11] S. Nakagiri: Pointwise completeness and degeneracy of functional differential equations in Banach spaces. General time delays. J. Math. Anal. Appl. 127 (1987), 2, 492-529. | MR

[12] S. Nakagiri: Structural properties of functional differential equations in Banach spaces. Osaka J. Math. 25 (1988), 353-398. | MR | Zbl

[13] S. Nakagiri, M. Yamamoto: Controllability and observability of linear retarded systems in Banach spaces. Internat. J. Control 49 (1989), 5, 1489-1504. | MR | Zbl

[14] K. Narukawa: Admissible controllability of one-dimensional vibrating systems with constrained controls. SIAM J. Control Optim. 20 (1982), 6, 770-782. | MR

[15] K. Narukawa: Complete controllability of one-dimensional vibrating systems with bang-bang controls. SIAM J. Control Optim. 22 (1984), 5, 788-804. | MR | Zbl

[16] R. E. O'Brien: Perturbation of controllable systems. SIAM J. Control Optim. 17 (1979), 2, 175-179. | MR | Zbl

[17] J. Park S. Nakagiri, M. Yamamoto: Max-min controllability of delay-differential games in Banach spaces. Kobe J. Math. 7 (1990), 147-166. | MR

[18] C. C. Travis, G. F. Webb: Existence and stability for partial functional differential equations. Trans. Amer. Math. Soc. 200 (1974), 395-418. | MR | Zbl

[19] C. C. Travis, G. F. Webb: Partial differential equations with deviating arguments in the time variable. J. Math. Anal. Appl. 56 (1976), 2, 397-409. | MR | Zbl

[20] R. Triggiani: Controllability and observability in Banach space with bounded operators. SIAM J. Control Optim. 13 (1975), 2, 462-491. | MR

[21] R. Triggiani: On the lack of exact controllability for mild solutions in Banach space. J. Math. Anal. Appl. 50 (1975), 2, 438-446. | MR

[22] R. Triggiani: Extensions of rank conditions for controllability and observability in Banach space and unbounded operators. SIAM J. Control Optim. 14 (1976), 2, 313-338. | MR

[23] R. Triggiani: A note on the lack of exact controllability for mild solutions in Banach spaces. SIAM J. Control Optim. 15 (1977), 3, 407-411. | MR | Zbl

[24] R. Triggiani: On the relationship between first and second order controllable systems in Banach spaces. SIAM J. Control Optim. 16 (1978), 6, 847-859. | MR | Zbl

[25] G. F. Webb: Linear functional differential equations with $L^2$ initial functions. Funkcial. Ekvac. 19 (1976), 1, 65-77. | MR