Balancing of systems with periodic jumps
Kybernetika, Tome 32 (1996) no. 6, pp. 575-590 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 93C05
@article{KYB_1996_32_6_a4,
     author = {Aripirala, Ravi and Syrmos, Vassilis L.},
     title = {Balancing of systems with periodic jumps},
     journal = {Kybernetika},
     pages = {575--590},
     year = {1996},
     volume = {32},
     number = {6},
     mrnumber = {1438106},
     zbl = {1043.93516},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1996_32_6_a4/}
}
TY  - JOUR
AU  - Aripirala, Ravi
AU  - Syrmos, Vassilis L.
TI  - Balancing of systems with periodic jumps
JO  - Kybernetika
PY  - 1996
SP  - 575
EP  - 590
VL  - 32
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1996_32_6_a4/
LA  - en
ID  - KYB_1996_32_6_a4
ER  - 
%0 Journal Article
%A Aripirala, Ravi
%A Syrmos, Vassilis L.
%T Balancing of systems with periodic jumps
%J Kybernetika
%D 1996
%P 575-590
%V 32
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1996_32_6_a4/
%G en
%F KYB_1996_32_6_a4
Aripirala, Ravi; Syrmos, Vassilis L. Balancing of systems with periodic jumps. Kybernetika, Tome 32 (1996) no. 6, pp. 575-590. http://geodesic.mathdoc.fr/item/KYB_1996_32_6_a4/

[1] B. A. Bamieh, J. B. Pearson, Jr.: A general framework for linear periodic systems with applications to $H_\infty$ sampled-data control. IEEE Trans. Automat. Control 37 (1992), 418-435. | MR

[2] T. Chen, B. A. Francis: $H_2$ Optimal sampled-data control. IEEE Trans. Automat. Control 36 (1991), 387-397. | MR

[3] K. Glover: All optimal Hankel-norm approximations of linear multivariable systems and their $L^\infty$-error bounds. Internat. J. Control 39 (1984), 1115-1193. | MR

[4] P. T. Kabamba, S. Hara: Worst-case analysis and design of sampled-data systems. IEEE Trans. on Automatic Control 38 (1993), 1337-1357. | MR

[5] C. Moler: Matlab User's Guide. The Mathworks Inc., 1980.

[6] B. C. Moore: Principle component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans. Automat. Control 26 (1981), 17-32. | MR

[7] C. T. Mullis, R. A. Roberts: Synthesis of minimum roundoff noise fixed point digital filters. IEEE Trans. Circuits and Systems 23 (1976), 551-562. | MR | Zbl

[8] K. M. Nagpal, P. P. Khargonekar: Filtering and smoothing in an $H_\infty$ setting. IEEE Trans. Automat. Control 36 (1991), 152-166. | MR

[9] S. Shokoohi L. M. Silverman, P. Van Dooren: Linear time-variable systems: Balancing and model reduction. IEEE Trans. Automat. Control 28 (1983), 810-822. | MR

[10] S. Shokoohi, L. M. Silverman: Model reduction of discrete time-variable systems via balancing. In: 20nd CDC, 1981, pp. 676-680.

[11] L. M. Silverman, B. D. O. Anderson: Controllability, observability and stability of linear systems. SIAM J. Control 17 (1968), 121-130. | MR | Zbl

[12] L. M. Silverman, H. E. Meadows: Controllability and observability in time-variable linear systems. SIAM J. Control 5 (1967), 64-73. | MR | Zbl

[13] W. Sun K. M. Nagpal, P. P. Khargonekar: Optimal sampler for $H_\infty$ control. In: 32nd CDC, San Antonio 1993, pp. 777-782.

[14] W. Sun K. M. Nagpal, P. P. Khargonekar: $H_\infty$ control and filtering for sampled-data systems. IEEE Trans. Automat. Control 38 (1993), 1162-1175. | MR

[15] L. Pernabo, L. M. Silverman: Model reduction via balanced state space representations. IEEE Trans. Automat. Control 27 (1982), 382-387. | MR

[16] L. Thiele: On the sensitivity of linear state-space systems. IEEE Trans. Circuits and Systems 33 (1986), 502-510. | MR | Zbl

[17] E. I. Verriest, T. Kailath: On generalized balanced realizations. IEEE Trans. Automat. Control 28 (1983), 833-845. | MR | Zbl