Optimum damping design for an abstract wave equation
Kybernetika, Tome 32 (1996) no. 6, pp. 557-574 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 93C20, 93D15, 93D21
@article{KYB_1996_32_6_a3,
     author = {Fahroo, Fariba and Ito, Kazufumi},
     title = {Optimum damping design for an abstract wave equation},
     journal = {Kybernetika},
     pages = {557--574},
     year = {1996},
     volume = {32},
     number = {6},
     mrnumber = {1438105},
     zbl = {1043.93544},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1996_32_6_a3/}
}
TY  - JOUR
AU  - Fahroo, Fariba
AU  - Ito, Kazufumi
TI  - Optimum damping design for an abstract wave equation
JO  - Kybernetika
PY  - 1996
SP  - 557
EP  - 574
VL  - 32
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1996_32_6_a3/
LA  - en
ID  - KYB_1996_32_6_a3
ER  - 
%0 Journal Article
%A Fahroo, Fariba
%A Ito, Kazufumi
%T Optimum damping design for an abstract wave equation
%J Kybernetika
%D 1996
%P 557-574
%V 32
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1996_32_6_a3/
%G en
%F KYB_1996_32_6_a3
Fahroo, Fariba; Ito, Kazufumi. Optimum damping design for an abstract wave equation. Kybernetika, Tome 32 (1996) no. 6, pp. 557-574. http://geodesic.mathdoc.fr/item/KYB_1996_32_6_a3/

[1] H. T. Banks, F. Fahroo: Legendre-Tau approximations for LQR feedback control of acoustic pressure fields. J. Math. Systems Estimation Control 5 (1995), 2, 271-274. | MR

[2] H. T. Banks, K. Ito: A unified framework for approximations in inverse problems for distributed parameter systems. Control Theory Adv. Tech. 4 (1988), 73-90. | MR

[3] G. Chen: A note on the boundary stabilization of the wave equation. SIAM J. Control Optim. 19 (1981), 106-113. | MR | Zbl

[4] G. Chen S. A. Fulling F. J. Narcowich, S. Sun: Exponential decay of energy of evolution equations with locally distributed damping. SIAM J. Appl. Math. 51 (1991), 266-301. | MR

[5] G. Chen S. A. Fulling F. J. Narcowich, C. Qi: An average asymptotic decay rate for the wave equation with variable coefficient viscous damping. SIAM J. Appl. Math. 49 (1990), 1341-1347. | MR

[6] G. Chen, J. Zhou: Vibration and Damping in Distributed Parameter Systems. Vol 1. CRC Press, Boca Raton, Fl 1993.

[7] R. Datko: Extending a theorem of A. M. Liapunov to Hilbert space. J. Math. Anal. Appl. 32 (1970), 610-616. | MR | Zbl

[8] I. Ekeland, R. Temam: Convex Analysis and Variational Problems. North Holland, Amsterdam 1976. | MR | Zbl

[9] F. Fahroo, K. Ito: Variational formulation of optimal damping designs. In preparation. | Zbl

[10] K. Ito: The application of Legendre-Tau approximations to parameter identification for delay and partial differential equations. In: Proc. 22nd IEEE Conf. on Decision and Control, December 1983, pp. 33-37.

[11] J. E. Lagnese: Decay of solutions of the wave equation in a bounded region with boundary dissipation. J. Differential Equations 50 (1983), 163-182. | MR

[12] A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York 1983. | MR | Zbl

[13] R. Triggiani: On the stabilizability problem in Banach space. J. Math. Anal. Appl. 52 (1975), 383-403. | MR | Zbl