@article{KYB_1996_32_6_a3,
author = {Fahroo, Fariba and Ito, Kazufumi},
title = {Optimum damping design for an abstract wave equation},
journal = {Kybernetika},
pages = {557--574},
year = {1996},
volume = {32},
number = {6},
mrnumber = {1438105},
zbl = {1043.93544},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1996_32_6_a3/}
}
Fahroo, Fariba; Ito, Kazufumi. Optimum damping design for an abstract wave equation. Kybernetika, Tome 32 (1996) no. 6, pp. 557-574. http://geodesic.mathdoc.fr/item/KYB_1996_32_6_a3/
[1] H. T. Banks, F. Fahroo: Legendre-Tau approximations for LQR feedback control of acoustic pressure fields. J. Math. Systems Estimation Control 5 (1995), 2, 271-274. | MR
[2] H. T. Banks, K. Ito: A unified framework for approximations in inverse problems for distributed parameter systems. Control Theory Adv. Tech. 4 (1988), 73-90. | MR
[3] G. Chen: A note on the boundary stabilization of the wave equation. SIAM J. Control Optim. 19 (1981), 106-113. | MR | Zbl
[4] G. Chen S. A. Fulling F. J. Narcowich, S. Sun: Exponential decay of energy of evolution equations with locally distributed damping. SIAM J. Appl. Math. 51 (1991), 266-301. | MR
[5] G. Chen S. A. Fulling F. J. Narcowich, C. Qi: An average asymptotic decay rate for the wave equation with variable coefficient viscous damping. SIAM J. Appl. Math. 49 (1990), 1341-1347. | MR
[6] G. Chen, J. Zhou: Vibration and Damping in Distributed Parameter Systems. Vol 1. CRC Press, Boca Raton, Fl 1993.
[7] R. Datko: Extending a theorem of A. M. Liapunov to Hilbert space. J. Math. Anal. Appl. 32 (1970), 610-616. | MR | Zbl
[8] I. Ekeland, R. Temam: Convex Analysis and Variational Problems. North Holland, Amsterdam 1976. | MR | Zbl
[9] F. Fahroo, K. Ito: Variational formulation of optimal damping designs. In preparation. | Zbl
[10] K. Ito: The application of Legendre-Tau approximations to parameter identification for delay and partial differential equations. In: Proc. 22nd IEEE Conf. on Decision and Control, December 1983, pp. 33-37.
[11] J. E. Lagnese: Decay of solutions of the wave equation in a bounded region with boundary dissipation. J. Differential Equations 50 (1983), 163-182. | MR
[12] A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York 1983. | MR | Zbl
[13] R. Triggiani: On the stabilizability problem in Banach space. J. Math. Anal. Appl. 52 (1975), 383-403. | MR | Zbl