Computational methods for estimation in the modeling of nonlinear elastomers
Kybernetika, Tome 32 (1996) no. 6, pp. 526-542 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 73C50, 73D35, 74S99, 93B40
@article{KYB_1996_32_6_a1,
     author = {Banks, H. T. and Lybeck, N. J. and Gaitens, M. J. and Mu\~noz, B. C. and Yanyo, L. C.},
     title = {Computational methods for estimation in the modeling of nonlinear elastomers},
     journal = {Kybernetika},
     pages = {526--542},
     year = {1996},
     volume = {32},
     number = {6},
     mrnumber = {1438103},
     zbl = {1043.74530},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1996_32_6_a1/}
}
TY  - JOUR
AU  - Banks, H. T.
AU  - Lybeck, N. J.
AU  - Gaitens, M. J.
AU  - Muñoz, B. C.
AU  - Yanyo, L. C.
TI  - Computational methods for estimation in the modeling of nonlinear elastomers
JO  - Kybernetika
PY  - 1996
SP  - 526
EP  - 542
VL  - 32
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1996_32_6_a1/
LA  - en
ID  - KYB_1996_32_6_a1
ER  - 
%0 Journal Article
%A Banks, H. T.
%A Lybeck, N. J.
%A Gaitens, M. J.
%A Muñoz, B. C.
%A Yanyo, L. C.
%T Computational methods for estimation in the modeling of nonlinear elastomers
%J Kybernetika
%D 1996
%P 526-542
%V 32
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1996_32_6_a1/
%G en
%F KYB_1996_32_6_a1
Banks, H. T.; Lybeck, N. J.; Gaitens, M. J.; Muñoz, B. C.; Yanyo, L. C. Computational methods for estimation in the modeling of nonlinear elastomers. Kybernetika, Tome 32 (1996) no. 6, pp. 526-542. http://geodesic.mathdoc.fr/item/KYB_1996_32_6_a1/

[1] H. T. Banks D. S. Gilliam, V. I. Shubov: Well-Posedness for a One Dimensional Nonlinear Beam. Technical Report No. CRSC-TR94-18, NCSU, 1994; Computation and Control IV, K. Bowers and J. Lund, eds., Birkhäuser, Boston 1995, pp. 1-21. | MR

[2] H. T. Banks D. S. Gilliam, V. I. Shubov: Global Solvability for Damped Abstract Nonlinear Hyperbolic Systems. Technical Report No. CRSC-TR95-25, NCSU, 1995; Differential and Integral Equations, to appear. | MR

[3] H. T. Banks K. Ito, Y. Wang: Well Posedness for Damped Second Order Systems with Unbounded Input Operators. Technical Report No. CRSC-TR93-10, NCSU, 1993; Differential and Integral Equations 8 (1995), 587-606. | MR

[4] H. T. Banks, N. J. Lybeck: A Nonlinear Lax-Milgram Lemma Arising in the Modeling of Elastomers. Technical Report No. CRSC-TR95-37, NCSU, 1995; Nonlinear Partial Differential Equations, Collège de France Seminar, Vol. 13, 1996, to appear. | MR

[5] H. T. Banks N. Medhin, Y. Zhang: A Mathematical Framework for Curved Active Constrained Layer Structures: Well-posedness and Approximation. Technical Report No. CRSC-TR95-32, NCSU, 1995; Numer. Funct. Anal. Optim., to appear. | MR

[6] H. T. Banks, J. G. Wade: Weak Tau approximations for distributed parameter systems in inverse problems. Numer. Funct. Anal. Optim. 12 (1991), 1-31. | MR | Zbl

[7] F. E. Browder: Nonlinear monotone operators and convex sets in Banach spaces. Bull. Amer. Math. Soc. 71 (1965), 780-785. | MR | Zbl

[8] D. J. Charlton J. Yang, K. K. Teh: A review of methods to characterize rubber elastic behavior for use in finite element analysis. Rubber Chemistry \& Technology 67 (1994), 481-503.

[9] R. M. Christensen: Theory of Viscoelasticity. Academic Press, New York 1982.

[10] R. W. Clough, J. Penzien: Dynamics of Structures. McGraw-Hill, New York 1975. | Zbl

[11] R. Dautray, J. L. Lions: Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 2: Functional and Variational Methods. Springer-Verlag, Berlin--Heidelberg 1988. | MR

[12] J. D. Ferry: Viscoelastic Properties of Polymers. John Wiley \& Sons, New York 1980.

[13] G. J. Minty: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29 (1962), 341-346. | MR | Zbl

[14] A. C. Pipkin: Lectures on Viscoelasticity Theory. Springer-Verlag, Berlin--Heidelberg 1972. | Zbl

[15] M. Renardy W. J. Hrusa, J. A. Nohel: Mathematical Problems in Viscoelasticity. Pittman Monograph, Longman/J. Wiley \& Sons, 1987. | MR

[16] R. S. Rivlin: Large elastic deformations of isotropic materials I, II, III. Philos. Trans. Roy. Soc. London Ser. A 240 (1948), 459-490, 491-508, 509-525.

[17] I. H. Shames, F. A. Cozzarelli: Elastic and Inelastic Stress Analysis. Prentice Hall, Englewood Cliffs, N. J. 1992. | Zbl

[18] S. Timoshenko D. H. Young, W. Weaver, Jr.: Vibration Problems in Engineering. J. Wiley \& Sons, New York 1974.

[19] L. R. G. Treloar: The Physics of Rubber Elasticity. Clarendon Press, Oxford 1975.

[20] I. M. Ward: Mechanical Properties of Solid Polymers. John Wiley \& Sons, New York 1983.

[21] J. Wloka: Partial Differential Equations. Cambridge University Press, Cambridge 1987. | MR | Zbl