@article{KYB_1996_32_6_a1,
author = {Banks, H. T. and Lybeck, N. J. and Gaitens, M. J. and Mu\~noz, B. C. and Yanyo, L. C.},
title = {Computational methods for estimation in the modeling of nonlinear elastomers},
journal = {Kybernetika},
pages = {526--542},
year = {1996},
volume = {32},
number = {6},
mrnumber = {1438103},
zbl = {1043.74530},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1996_32_6_a1/}
}
TY - JOUR AU - Banks, H. T. AU - Lybeck, N. J. AU - Gaitens, M. J. AU - Muñoz, B. C. AU - Yanyo, L. C. TI - Computational methods for estimation in the modeling of nonlinear elastomers JO - Kybernetika PY - 1996 SP - 526 EP - 542 VL - 32 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_1996_32_6_a1/ LA - en ID - KYB_1996_32_6_a1 ER -
%0 Journal Article %A Banks, H. T. %A Lybeck, N. J. %A Gaitens, M. J. %A Muñoz, B. C. %A Yanyo, L. C. %T Computational methods for estimation in the modeling of nonlinear elastomers %J Kybernetika %D 1996 %P 526-542 %V 32 %N 6 %U http://geodesic.mathdoc.fr/item/KYB_1996_32_6_a1/ %G en %F KYB_1996_32_6_a1
Banks, H. T.; Lybeck, N. J.; Gaitens, M. J.; Muñoz, B. C.; Yanyo, L. C. Computational methods for estimation in the modeling of nonlinear elastomers. Kybernetika, Tome 32 (1996) no. 6, pp. 526-542. http://geodesic.mathdoc.fr/item/KYB_1996_32_6_a1/
[1] H. T. Banks D. S. Gilliam, V. I. Shubov: Well-Posedness for a One Dimensional Nonlinear Beam. Technical Report No. CRSC-TR94-18, NCSU, 1994; Computation and Control IV, K. Bowers and J. Lund, eds., Birkhäuser, Boston 1995, pp. 1-21. | MR
[2] H. T. Banks D. S. Gilliam, V. I. Shubov: Global Solvability for Damped Abstract Nonlinear Hyperbolic Systems. Technical Report No. CRSC-TR95-25, NCSU, 1995; Differential and Integral Equations, to appear. | MR
[3] H. T. Banks K. Ito, Y. Wang: Well Posedness for Damped Second Order Systems with Unbounded Input Operators. Technical Report No. CRSC-TR93-10, NCSU, 1993; Differential and Integral Equations 8 (1995), 587-606. | MR
[4] H. T. Banks, N. J. Lybeck: A Nonlinear Lax-Milgram Lemma Arising in the Modeling of Elastomers. Technical Report No. CRSC-TR95-37, NCSU, 1995; Nonlinear Partial Differential Equations, Collège de France Seminar, Vol. 13, 1996, to appear. | MR
[5] H. T. Banks N. Medhin, Y. Zhang: A Mathematical Framework for Curved Active Constrained Layer Structures: Well-posedness and Approximation. Technical Report No. CRSC-TR95-32, NCSU, 1995; Numer. Funct. Anal. Optim., to appear. | MR
[6] H. T. Banks, J. G. Wade: Weak Tau approximations for distributed parameter systems in inverse problems. Numer. Funct. Anal. Optim. 12 (1991), 1-31. | MR | Zbl
[7] F. E. Browder: Nonlinear monotone operators and convex sets in Banach spaces. Bull. Amer. Math. Soc. 71 (1965), 780-785. | MR | Zbl
[8] D. J. Charlton J. Yang, K. K. Teh: A review of methods to characterize rubber elastic behavior for use in finite element analysis. Rubber Chemistry \& Technology 67 (1994), 481-503.
[9] R. M. Christensen: Theory of Viscoelasticity. Academic Press, New York 1982.
[10] R. W. Clough, J. Penzien: Dynamics of Structures. McGraw-Hill, New York 1975. | Zbl
[11] R. Dautray, J. L. Lions: Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 2: Functional and Variational Methods. Springer-Verlag, Berlin--Heidelberg 1988. | MR
[12] J. D. Ferry: Viscoelastic Properties of Polymers. John Wiley \& Sons, New York 1980.
[13] G. J. Minty: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29 (1962), 341-346. | MR | Zbl
[14] A. C. Pipkin: Lectures on Viscoelasticity Theory. Springer-Verlag, Berlin--Heidelberg 1972. | Zbl
[15] M. Renardy W. J. Hrusa, J. A. Nohel: Mathematical Problems in Viscoelasticity. Pittman Monograph, Longman/J. Wiley \& Sons, 1987. | MR
[16] R. S. Rivlin: Large elastic deformations of isotropic materials I, II, III. Philos. Trans. Roy. Soc. London Ser. A 240 (1948), 459-490, 491-508, 509-525.
[17] I. H. Shames, F. A. Cozzarelli: Elastic and Inelastic Stress Analysis. Prentice Hall, Englewood Cliffs, N. J. 1992. | Zbl
[18] S. Timoshenko D. H. Young, W. Weaver, Jr.: Vibration Problems in Engineering. J. Wiley \& Sons, New York 1974.
[19] L. R. G. Treloar: The Physics of Rubber Elasticity. Clarendon Press, Oxford 1975.
[20] I. M. Ward: Mechanical Properties of Solid Polymers. John Wiley \& Sons, New York 1983.
[21] J. Wloka: Partial Differential Equations. Cambridge University Press, Cambridge 1987. | MR | Zbl