Optimal initial functions of retarded control systems
Kybernetika, Tome 32 (1996) no. 5, pp. 455-464 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 49K25, 49N60
@article{KYB_1996_32_5_a2,
     author = {Park, J.-Y. and Jeong, J.-M. and Kwun, Y.-C.},
     title = {Optimal initial functions of retarded control systems},
     journal = {Kybernetika},
     pages = {455--464},
     year = {1996},
     volume = {32},
     number = {5},
     mrnumber = {1420135},
     zbl = {0881.49018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1996_32_5_a2/}
}
TY  - JOUR
AU  - Park, J.-Y.
AU  - Jeong, J.-M.
AU  - Kwun, Y.-C.
TI  - Optimal initial functions of retarded control systems
JO  - Kybernetika
PY  - 1996
SP  - 455
EP  - 464
VL  - 32
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1996_32_5_a2/
LA  - en
ID  - KYB_1996_32_5_a2
ER  - 
%0 Journal Article
%A Park, J.-Y.
%A Jeong, J.-M.
%A Kwun, Y.-C.
%T Optimal initial functions of retarded control systems
%J Kybernetika
%D 1996
%P 455-464
%V 32
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1996_32_5_a2/
%G en
%F KYB_1996_32_5_a2
Park, J.-Y.; Jeong, J.-M.; Kwun, Y.-C. Optimal initial functions of retarded control systems. Kybernetika, Tome 32 (1996) no. 5, pp. 455-464. http://geodesic.mathdoc.fr/item/KYB_1996_32_5_a2/

[1] G. Da Prato, L. Lunardi: Stabilizability of integrodifferential parabolic equations. J. Integral Equations 2 (1990), 2, 281-304. | MR | Zbl

[2] G. Di Blasio K. Kunisch, E. Sinestrari: $L^2$-regularity for parabolic partial integrodifferential equations with delay in the highest-order derivative. J. Math. Anal. Appl. 102 (1984), 38-57. | MR

[3] J. S. Gibson: The Riccati integral equations for optimal control problems on Hilbert spaces. SIAM J. Control Optim. 17 (1979), 4, 537-565. | MR | Zbl

[4] J. M. Jeong: Stabilizability of retarded functional differential equation in Hilbert space. Osaka J. Math. 28 (1991), 347-365. | MR | Zbl

[5] J. M. Jeong: Retarded functional differential equations with $L^1$-valued controller. Funkcial. Ekvac. 36 (1993), 71-93. | MR

[6] J. L. Lions: Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, Berlin--New York 1971. | MR | Zbl

[7] S. Nakagiri: Structural properties of functional differential equations in Banach spaces. Osaka J. Math. 25 (1988), 353-398. | MR | Zbl

[8] S. Nakagiri: Optimal control of linear retarded systems in Banach space. J. Math. Anal. Appl. 120 (1986), 169-210. | MR

[9] T. Suzuki, M. Yamamoto: Observability, controllability, and feedback stabilizability for evolution equations I. Japan J. Appl. Math. 2 (1985), 211-228. | MR | Zbl

[10] H. Tanabe: Equations of Evolution. Pitman, London 1979. | MR | Zbl

[11] H. Tanabe: Fundamental solution of differential equation with time delay in Banach space. Funkcial. Ekvac. 35 (1992), 149-177 | MR