An extension of the root perturbation $m$-dimensional polynomial factorization method
Kybernetika, Tome 32 (1996) no. 5, pp. 443-453 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 12Y05, 26C10, 65H05, 65H10, 93B40, 93B60
@article{KYB_1996_32_5_a1,
     author = {Mastorakis, Nikos E.},
     title = {An extension of the root perturbation $m$-dimensional polynomial factorization method},
     journal = {Kybernetika},
     pages = {443--453},
     year = {1996},
     volume = {32},
     number = {5},
     mrnumber = {1420134},
     zbl = {0886.65053},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1996_32_5_a1/}
}
TY  - JOUR
AU  - Mastorakis, Nikos E.
TI  - An extension of the root perturbation $m$-dimensional polynomial factorization method
JO  - Kybernetika
PY  - 1996
SP  - 443
EP  - 453
VL  - 32
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1996_32_5_a1/
LA  - en
ID  - KYB_1996_32_5_a1
ER  - 
%0 Journal Article
%A Mastorakis, Nikos E.
%T An extension of the root perturbation $m$-dimensional polynomial factorization method
%J Kybernetika
%D 1996
%P 443-453
%V 32
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1996_32_5_a1/
%G en
%F KYB_1996_32_5_a1
Mastorakis, Nikos E. An extension of the root perturbation $m$-dimensional polynomial factorization method. Kybernetika, Tome 32 (1996) no. 5, pp. 443-453. http://geodesic.mathdoc.fr/item/KYB_1996_32_5_a1/

[1] A. C. Antulas: A system-theoretic approach to the factorization theory of non-singular polynomial matrices. Internat. J. Systems Sci. 33 (1981), 6, 1005-1026. | MR

[2] J. S. Chakrabarti, S. K. Mitra: An algorithm for multivariable polynomial factorization. In: Proc. IEEE Internat. Symp. Circ. Syst. 1977, pp. 678-683.

[3] G. E. Collins: Computer algebra of polynomials and functions. Amer. Math. Monthly 80 (1973), 725-755. | MR

[4] D. E. Dudgeon: The existence of cepstra for 2-D polynomials. IEEE Trans. Acoust. Speech Signal Process. ASSP-23 (1975), 2, 242-243.

[5] M. P. Ekstrom, R. E. Twogood: Finite order, recursive models for 2-D random fields. In: Proc. of the 20th Hidwest Symp. Circ. Syst. 1977, pp. 188-189.

[6] M. P. Ekstrom, J. W. Woods: Spectral factorization. IEEE Trans. Acoust. Speech Signal Process. ASSP-24 (1976), 2, 115-128. | MR

[7] R. Gorez: Matrix factorization. Chandrasekhar equations techniques in the design of linear quadratic optimal control systems. Internat. J. Systems Sci. 12 (1981), 8, 907-915. | MR

[8] R. L. Graham D. E. Knuth, O. Patashnik: Concrete Mathematics, A Foundation for Computer Science. Addison-Wesley Publishing Company, New York 1994. | MR

[9] T. Kaczorek: Two-Dimensional Linear Systems. Springer-Verlag, Berlin--Heidelberg 1985. | MR | Zbl

[10] D. E. Knuth: The Art of Computer Programming. Vol. 1: Fundamental algorithms. -- Vol. 2: Seminumerical Algorithms. -- Vol. 3: Electronic Digital Computers -- Programming. Addison-Wesley Publishing Company, London--Amsterdam--Ontario--Sydney 1981. | MR

[11] N. E. Mastorakis: Multidimensional Polynomials. Ph.D. Thesis. National Technical University of Athens 1992. | Zbl

[12] N. E. Mastorakis, E. Nikos: Algebra and Analysis of Multivariable Polynomials: General methods of multivariable polynomial factorization. Athens 1988. (In Greek).

[13] N. E. Mastorakis, N. J. Theodorou: 'Operators' method for $m$-D polynomials factorization. Found. Comput. Decision Sci. 15 (1990), 2-3, 159-172. | MR

[14] N. E. Mastorakis S. G. Tzafestas, N. J. Theodorou: A simple multidimensional polynomial factorization method. In: IMACS-IFAC Internat. Symp. on Math. and Intelligent Models in System Simulation, Brussels 1990, VII.B.1-1.

[15] N. E. Mastorakis, N. J. Theodorou: State-space model factorization in $m$-dimensions. Application in stability. Foundation of Computing and Decision Sciences 17 (1992), 55-61. | MR

[16] N. E. Mastorakis N. J. Theodorou, S. G. Tzafestas: Factorization of $m$-D polynomials into linear $m$-D factors. Internat. J. Systems Sci. 23 (1992), 11, 1805-1824. | MR

[17] N. E. Mastorakis N. J. Theodorou, S. G. Tzafestas: A general factorization method for multivariable polynomial. Mult. Syst. and Sign. Process. 5 (1994), 151-178. | MR

[18] N. E. Mastorakis S. G. Tzafestas, N. J. Theodorou: A reduction method for multivariable polynomial factorization. In: Conference SPRANN'94, IMACS-IEEE International Symposium, Lille 1994, pp. 59-64.

[19] N. E. Mastorakis S. G. Tzafestas, N. J. Theodorou: Multidimensional polynomial factorization through the root perturbation approach. Part I. Control Theory Adv. Technology 10 (1994), 4, 901-911. | MR

[20] P. Misra, R. V. Patel: Simple factorizability of 2-D polynomials. In: Internat. Symp. Circ. Syst., New Orleans 1990, pp. 1207-1210.

[21] L. S. Shieh, N. Clahin: A computer-aided method for the factorization of matrix polynomials. Internat. J. Systems Sci. 12 (1981), 3, 305-323. | MR

[22] N. J. Theodorou, S. C. Tzafestas: Factorizability conditions for multidimensional polynomials. IEEE Trans. Automat. Control AC-30 (1985), 7, 697-700. | MR | Zbl

[23] S. G. Tzafestas (ed.): Multidimensional Systems. Techniques and Applications. Marcel Dekker, New York 1986. | Zbl

[24] P. W. Wang, L. P. Rotchild: Factorizing over the integers. Comput. Math. 30 (1975), 324-336.