On the Morgan problem with stability
Kybernetika, Tome 32 (1996) no. 5, pp. 425-441 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34H05, 93B11, 93B27, 93B51, 93D05
@article{KYB_1996_32_5_a0,
     author = {Ruiz, Javier and Zagalak, Petr and Eldem, Vasfi},
     title = {On the {Morgan} problem with stability},
     journal = {Kybernetika},
     pages = {425--441},
     year = {1996},
     volume = {32},
     number = {5},
     mrnumber = {1420133},
     zbl = {0885.34055},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1996_32_5_a0/}
}
TY  - JOUR
AU  - Ruiz, Javier
AU  - Zagalak, Petr
AU  - Eldem, Vasfi
TI  - On the Morgan problem with stability
JO  - Kybernetika
PY  - 1996
SP  - 425
EP  - 441
VL  - 32
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1996_32_5_a0/
LA  - en
ID  - KYB_1996_32_5_a0
ER  - 
%0 Journal Article
%A Ruiz, Javier
%A Zagalak, Petr
%A Eldem, Vasfi
%T On the Morgan problem with stability
%J Kybernetika
%D 1996
%P 425-441
%V 32
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1996_32_5_a0/
%G en
%F KYB_1996_32_5_a0
Ruiz, Javier; Zagalak, Petr; Eldem, Vasfi. On the Morgan problem with stability. Kybernetika, Tome 32 (1996) no. 5, pp. 425-441. http://geodesic.mathdoc.fr/item/KYB_1996_32_5_a0/

[1] U. Başer, V. Eldem: Diagonal decoupling problem with internal stability: A solution by dynamic output feedback and constant precompensator. In: 3rd IFAC Conference on System Structure and Control, Nantes, France, 5-7 July 1995.

[2] J. Descusse J. F. Lafay, M. Malabre: Solution to Morgan's problem. IEEE Trans. Automat. Control 33 (1988), 8, 732-739. | MR

[3] J. M. Dion, C. Commault: The minimal delay decoupling problem: Feedback implementation with stability. SIAM J. Control Optim. 26 (1988), 1, 66-82. | MR | Zbl

[4] V. Eldem: Feedback realization of open loop diagonalizers. Kybernetika 29 (1993), 5, 406-416. | MR | Zbl

[5] V. Eldem: The solution of diagonal decoupling problem by dynamic output feedback and constant precompensator: The general case. IEEE Trans. Automat. Control 39 (1994), 3, 503-511. | MR | Zbl

[6] P. L. Falb, W. A. Wolovich: Decoupling in the design and synthesis of multivariable control systems. IEEE Trans. Automat. Control AC-12 (1967), 6, 651-659.

[7] A. Herrera: On the static realization of dynamic precompensators and some related problems. In: Proceedings 1st European Control Conference, Grenoble, France 1991. | MR

[8] A. Herrera J. F. Lafay, P. Zagalak: A semicanonical form for a class of right invertible systems. In: Preprints IFAC Conference on System Structure and Control, Nantes, France 1995, pp. 590-594.

[9] V. Kučera, A. Herrera: Static realization of dynamic precompensators for descriptor systems. Systems Control Lett. 16 (1991), 273-276. | MR

[10] V. Kučera, P. Zagalak: Constant solutions of polynomial equations. Internat. J. Control 53 (1991), 2, 495-502. | MR

[11] M. Malabre V. Kučera, P. Zagalak: Reachability and controllability indices for linear descriptor systems. Systems Control Lett. 15 (1990), 119-123. | MR

[12] J. C. Martinez Garcia, M. Malabre: The row by row decoupling problem with stability. IEEE Trans. Automat. Control (to appear). | Zbl

[13] B. S. Morgan, Jr.: The synthesis of linear multivariable systems by state-variable feedback. IEEE Trans. Automat. Control AC-9 (1964), 405-411. | MR

[14] A. S. Morse, W. M. Wonham: Status of noninteracting control. IEEE Trans. Automat. Control AC-16 (1971), 6, 568-581. | MR

[15] L. Pernebo: An algebraic theory for the design of controllers for linear multivariable systems. Parts I and II. IEEE Trans. Automat. Control AC-26 (1981), 1, 171-182 and 183-194.

[16] J. Ruiz: Decoupling of Linear Systems. Ph.D. Thesis. Czech Technical University, Prague 1996.

[17] P. Zagalak J. F. Lafay, A. Herrera: The row-by-row decoupling via state feedback: A polynomial approach. Automatica 29 (1993), 6, 1491-1499. | MR