On a class of perimeter-type distances of probability distributions
Kybernetika, Tome 32 (1996) no. 4, pp. 389-393 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 60E05, 62B10, 94A17
@article{KYB_1996_32_4_a4,
     author = {\"Osterreicher, Ferdinand},
     title = {On a class of perimeter-type distances of probability distributions},
     journal = {Kybernetika},
     pages = {389--393},
     year = {1996},
     volume = {32},
     number = {4},
     mrnumber = {1420130},
     zbl = {0897.60015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1996_32_4_a4/}
}
TY  - JOUR
AU  - Österreicher, Ferdinand
TI  - On a class of perimeter-type distances of probability distributions
JO  - Kybernetika
PY  - 1996
SP  - 389
EP  - 393
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_1996_32_4_a4/
LA  - en
ID  - KYB_1996_32_4_a4
ER  - 
%0 Journal Article
%A Österreicher, Ferdinand
%T On a class of perimeter-type distances of probability distributions
%J Kybernetika
%D 1996
%P 389-393
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_1996_32_4_a4/
%G en
%F KYB_1996_32_4_a4
Österreicher, Ferdinand. On a class of perimeter-type distances of probability distributions. Kybernetika, Tome 32 (1996) no. 4, pp. 389-393. http://geodesic.mathdoc.fr/item/KYB_1996_32_4_a4/

[1] S. M. Ali, S. D. Silvey: A general class of coefficients of divergence of one distribution from another. J. Roy. Statist. Soc. Ser. B 28 (1966), 131-142. | MR | Zbl

[2] D. E. Boekee: A generalization of the Fisher information measure. Delft University Press, Delft 1977.

[3] I. Csiszár, J. Fischer: Informationsentfernungen im Raum der Wahrscheinlichkeitsverteilungen. Magyar Tud. Akad. Mat. Kutató Int. Kösl. 7 (1962), 159-180. | MR

[4] I. Csiszár: Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963), 85-107. | MR

[5] D. Feldman, F. Österreicher: Divergenzen von Wahrscheinlichkeitsverteilungen -- integralgeometrisch betrachtet. Acta Math. Acad. Sci. Hungar. 37 (1981), 4, 329-337. | MR

[6] P. Kafka F. Österreicher, I. Vincze: On powers of $f$-divergences defining a distance. Studia Sci. Math. Hungar. 26 (1991), 415-422. | MR

[7] F. Liese, I. Vajda: Convex Statistical Distances. Teubner-Texte zur Mathematik, Band 95, Leipzig 1987. | MR | Zbl

[8] K. Matusita: Decision rules based on the distance for problems of fit, two samples and estimation. Ann. Math. Stat. 26 (1955), 631-640. | MR | Zbl

[9] F. Österreicher: The construction of least favourable distributions is traceable to a minimal perimeter problem. Studia Sci. Math. Hungar. 17 (1982), 341-351. | MR

[10] F. Österreicher: The risk set of a testing problem -- A vivid statistical tool. In: Trans. of the Eleventh Prague Conference, Academia, Prague 1992, Vol. A, pp. 175-188.

[11] E. Reschenhofer, I. M. Bomze: Length tests for goodness of fit. Biometrika 78 (1991), 207-216. | MR | Zbl

[12] I. Vajda, F. Österreicher: Statistical information and discrimination. IEEE Trans. Inform. Theory 39 (1993), 3, 1036-1039. | MR

[13] I. Vincze: On the concept and measure of information contained in an observation. In: Contributions to Probability (J. Gani and V. F. Rohatgi, eds.), Academic Press, New York 1981, pp. 207-214. | MR | Zbl