@article{KYB_1996_32_4_a4,
author = {\"Osterreicher, Ferdinand},
title = {On a class of perimeter-type distances of probability distributions},
journal = {Kybernetika},
pages = {389--393},
year = {1996},
volume = {32},
number = {4},
mrnumber = {1420130},
zbl = {0897.60015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1996_32_4_a4/}
}
Österreicher, Ferdinand. On a class of perimeter-type distances of probability distributions. Kybernetika, Tome 32 (1996) no. 4, pp. 389-393. http://geodesic.mathdoc.fr/item/KYB_1996_32_4_a4/
[1] S. M. Ali, S. D. Silvey: A general class of coefficients of divergence of one distribution from another. J. Roy. Statist. Soc. Ser. B 28 (1966), 131-142. | MR | Zbl
[2] D. E. Boekee: A generalization of the Fisher information measure. Delft University Press, Delft 1977.
[3] I. Csiszár, J. Fischer: Informationsentfernungen im Raum der Wahrscheinlichkeitsverteilungen. Magyar Tud. Akad. Mat. Kutató Int. Kösl. 7 (1962), 159-180. | MR
[4] I. Csiszár: Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963), 85-107. | MR
[5] D. Feldman, F. Österreicher: Divergenzen von Wahrscheinlichkeitsverteilungen -- integralgeometrisch betrachtet. Acta Math. Acad. Sci. Hungar. 37 (1981), 4, 329-337. | MR
[6] P. Kafka F. Österreicher, I. Vincze: On powers of $f$-divergences defining a distance. Studia Sci. Math. Hungar. 26 (1991), 415-422. | MR
[7] F. Liese, I. Vajda: Convex Statistical Distances. Teubner-Texte zur Mathematik, Band 95, Leipzig 1987. | MR | Zbl
[8] K. Matusita: Decision rules based on the distance for problems of fit, two samples and estimation. Ann. Math. Stat. 26 (1955), 631-640. | MR | Zbl
[9] F. Österreicher: The construction of least favourable distributions is traceable to a minimal perimeter problem. Studia Sci. Math. Hungar. 17 (1982), 341-351. | MR
[10] F. Österreicher: The risk set of a testing problem -- A vivid statistical tool. In: Trans. of the Eleventh Prague Conference, Academia, Prague 1992, Vol. A, pp. 175-188.
[11] E. Reschenhofer, I. M. Bomze: Length tests for goodness of fit. Biometrika 78 (1991), 207-216. | MR | Zbl
[12] I. Vajda, F. Österreicher: Statistical information and discrimination. IEEE Trans. Inform. Theory 39 (1993), 3, 1036-1039. | MR
[13] I. Vincze: On the concept and measure of information contained in an observation. In: Contributions to Probability (J. Gani and V. F. Rohatgi, eds.), Academic Press, New York 1981, pp. 207-214. | MR | Zbl