@article{KYB_1996_32_4_a3,
author = {Hille, J\"urgen and Plachky, Detlef},
title = {Monogenicity of probability measures based on measurable sets invariant under finite groups of transformations},
journal = {Kybernetika},
pages = {375--387},
year = {1996},
volume = {32},
number = {4},
mrnumber = {1420129},
zbl = {0939.28009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1996_32_4_a3/}
}
TY - JOUR AU - Hille, Jürgen AU - Plachky, Detlef TI - Monogenicity of probability measures based on measurable sets invariant under finite groups of transformations JO - Kybernetika PY - 1996 SP - 375 EP - 387 VL - 32 IS - 4 UR - http://geodesic.mathdoc.fr/item/KYB_1996_32_4_a3/ LA - en ID - KYB_1996_32_4_a3 ER -
Hille, Jürgen; Plachky, Detlef. Monogenicity of probability measures based on measurable sets invariant under finite groups of transformations. Kybernetika, Tome 32 (1996) no. 4, pp. 375-387. http://geodesic.mathdoc.fr/item/KYB_1996_32_4_a3/
[1] P. Billingsley: Ergodic Theory and Information. Wiley, New York 1965. | MR | Zbl
[2] D. Blackwell, L. E. Dubins: On existence and non-existence of proper regular conditional distributions. Ann. Prob. 3 (1975), 741-752. | MR | Zbl
[3] D. L. Cohn: Measure Theory. Birkhäuser, Boston 1980. | MR | Zbl
[4] E. Grzegorek: Symmetric $\sigma$-fields of sets and universal null sets. In: Measure Theory, Lecture Notes in Mathematics, Vol. 945, Oberwolfach 1981, pp. 101-109. | MR
[5] J. Nedoma: Note on generalized random variables. In: Trans. of the First Prague Conference, Prague 1956, pp. 139-142. | MR
[6] D. Plachky: Characterization of continuous dependence of distributions on location parameters. In: Trans. of the Eleventh Prague Conference, Vol. A, Prague 1990, pp. 189-194.
[7] D. Plachky: A multivariate generalization of a theorem of R. H. Farrell. Proc. Amer. Math. Soc. 113 (1991), 163-165. | MR | Zbl
[8] D. Plachky: Characterization of discrete probability distributions by the existence of regular conditional distributions respectively continuity from below of inner probability measures. Asymptotic Statistics. In: Proc. of the Fifth Prague Conference, Prague 1993, pp. 421-424. | MR