Monogenicity of probability measures based on measurable sets invariant under finite groups of transformations
Kybernetika, Tome 32 (1996) no. 4, pp. 375-387 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 28A10, 28A99, 60A10
@article{KYB_1996_32_4_a3,
     author = {Hille, J\"urgen and Plachky, Detlef},
     title = {Monogenicity of probability measures based on measurable sets invariant under finite groups of transformations},
     journal = {Kybernetika},
     pages = {375--387},
     year = {1996},
     volume = {32},
     number = {4},
     mrnumber = {1420129},
     zbl = {0939.28009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1996_32_4_a3/}
}
TY  - JOUR
AU  - Hille, Jürgen
AU  - Plachky, Detlef
TI  - Monogenicity of probability measures based on measurable sets invariant under finite groups of transformations
JO  - Kybernetika
PY  - 1996
SP  - 375
EP  - 387
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_1996_32_4_a3/
LA  - en
ID  - KYB_1996_32_4_a3
ER  - 
%0 Journal Article
%A Hille, Jürgen
%A Plachky, Detlef
%T Monogenicity of probability measures based on measurable sets invariant under finite groups of transformations
%J Kybernetika
%D 1996
%P 375-387
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_1996_32_4_a3/
%G en
%F KYB_1996_32_4_a3
Hille, Jürgen; Plachky, Detlef. Monogenicity of probability measures based on measurable sets invariant under finite groups of transformations. Kybernetika, Tome 32 (1996) no. 4, pp. 375-387. http://geodesic.mathdoc.fr/item/KYB_1996_32_4_a3/

[1] P. Billingsley: Ergodic Theory and Information. Wiley, New York 1965. | MR | Zbl

[2] D. Blackwell, L. E. Dubins: On existence and non-existence of proper regular conditional distributions. Ann. Prob. 3 (1975), 741-752. | MR | Zbl

[3] D. L. Cohn: Measure Theory. Birkhäuser, Boston 1980. | MR | Zbl

[4] E. Grzegorek: Symmetric $\sigma$-fields of sets and universal null sets. In: Measure Theory, Lecture Notes in Mathematics, Vol. 945, Oberwolfach 1981, pp. 101-109. | MR

[5] J. Nedoma: Note on generalized random variables. In: Trans. of the First Prague Conference, Prague 1956, pp. 139-142. | MR

[6] D. Plachky: Characterization of continuous dependence of distributions on location parameters. In: Trans. of the Eleventh Prague Conference, Vol. A, Prague 1990, pp. 189-194.

[7] D. Plachky: A multivariate generalization of a theorem of R. H. Farrell. Proc. Amer. Math. Soc. 113 (1991), 163-165. | MR | Zbl

[8] D. Plachky: Characterization of discrete probability distributions by the existence of regular conditional distributions respectively continuity from below of inner probability measures. Asymptotic Statistics. In: Proc. of the Fifth Prague Conference, Prague 1993, pp. 421-424. | MR