@article{KYB_1996_32_3_a6,
author = {Madjarov, Nikola and Mihaylova, Ludmila},
title = {Kalman filter sensitivity with respect to parametric noises uncertainty},
journal = {Kybernetika},
pages = {307--322},
year = {1996},
volume = {32},
number = {3},
mrnumber = {1438222},
zbl = {0874.93087},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1996_32_3_a6/}
}
Madjarov, Nikola; Mihaylova, Ludmila. Kalman filter sensitivity with respect to parametric noises uncertainty. Kybernetika, Tome 32 (1996) no. 3, pp. 307-322. http://geodesic.mathdoc.fr/item/KYB_1996_32_3_a6/
[1] V. Angelova N. Christov, P. Petkov: Perturbation and numerical analysis of Kalman filters. Automatics \& Informatics (1993), 5/6, 19-20 (in Bulgarian).
[2] K. Birmiwal, J. Shen: Optimal robust filtering. Statist. Decisions 11 (1993), 101-119. | MR | Zbl
[3] B. Carew, P. Bélanger: Identification of optimum filter steady-state gain for systems with unknown noise covariances. IEEE Trans. Automat. Control 18 (1973), 6, 582-587. | MR
[4] P. Gahinet, A. Laub: Computable bounds for the sensitivity of algebraic Riccati equation. SIAM J. Control Optim. 28 (1990), 6, 1461-1480. | MR
[5] R. E. Griffin, A. P. Sage: Large and small scale sensitivity analysis of optimum estimation algorithms. IEEE Trans. Automat. Control 13 (1968), 4, 320-329. | MR
[6] R. E. Griffin, A. P. Sage: Sensitivity analysis of discrete filtering and smoothing algorithms. AIAA J. 7 (1969), 10, 1890-1897. | Zbl
[7] N. S. Gritsenko, al: Adaptive estimation: a survey. Zarubezhnaya Radioelectronica (1983), 7, 3-27 and (1985), 3, 3-26 (in Russian).
[8] A. H. Jazwinski: Stochastic Processes and Filtering Theory. Academic Press, New York 1970. | Zbl
[9] R. E. Kalman: A new approach to linear filtering and prediction problems. Trans. ASME, J. Basic Engrg. 82D (1960), 34-45.
[10] C. Kenney, G. Hewer: The sensitivity of the algebraic and differential Riccati equations. SIAM J. Control Optim. 28 (1990), 1, 50-69. | MR | Zbl
[11] B. Kovačević Ž. Durović, S. Glavaški: On robust Kalman filtering. Internat. J. Control 56 (1992), 3, 547-562. | MR
[12] D. G. Lainiotis, F. L. Sims: Sensitivity analysis of discrete Kalman filters. Internat. J. Control 12 (1970), 4, 657-669. | Zbl
[13] N. Madjarov, L. Mihaylova: Sensitivity analysis of linear optimal stochastic observers. In: Proc. of the IEEE Internat. Conf. on Systems, Man and Cybernetics, Systems Engineering in the Service of Humans. Le Touquet, France 1993, pp. 482-487.
[14] N. Madjarov, L. Mihaylova: Sensitivity of Kalman filters. Automatics \& Informatics (1993), 1/2, 1-18 (in Bulgarian). | Zbl
[15] N. Madjarov, L. Mihaylova: Kalman filters under stochastic uncertainty. In: Proc. of the Tenth Internat. Conf. on Systems Engineering, Coventry 1994, 756-763.
[16] C. J. Masreliez, R. D. Martin: Robust Bayesian estimation for the linear model and robustifying the Kalman filter. IEEE Trans. Automat. Control 22 (1977), 3, 361-371. | MR | Zbl
[17] A. I. Matasov: The Kalman-Bucy filter accuracy in the guaranteed parameter estimation problem with uncertain statistics. IEEE Trans. Automat. Control 39 (1994), 3, 635-639. | MR | Zbl
[18] V. Mathews, Z. Xie: A stochastic gradient adaptive filter with gradient adaptive step size. IEEE Trans. Sign. Process. 41 (1993), 6, 2075-2087. | Zbl
[19] R. K. Mehra: Approaches to adaptive filtering. IEEE Trans. Automat. Control 11 (1972), 5, 693-698. | MR | Zbl
[20] A. Moghaddamjoo: Approaches to adaptive Kalman filtering: a survey. Control Theory and Adv. Tech. 5 (1989), 1, 1-18. | MR
[21] J. M. Morris: The Kalman filter: A robust estimator for some classes of linear quadratic problems. IEEE Trans. Inform. Theory 22 (1976), 5, 526-534. | MR | Zbl
[22] T. Nishimura: Modeling errors in Kalman filters. In: Theory and Application of Kalman Filtering (C.T. Leondes, ed.), Chapter 4, 1970, AGARDograph No. 139.
[23] M. Ogarkov: Methods for Statistical Estimation of Random Processes Parameters. Energoatomizdat, Moscow 1990 (in Russian). | MR
[24] R. V. Patel, M. Toda: Bounds on performance of non stationary continuous-time filters under modeling uncertainty. Automatica 20 (1984), 1, 117-120.
[25] S. Sangsuk-Iam, T. Bullok: Analysis of continuous-time Kalman filtering under incorrect noise covariances. Automatica 24 (1988), 5, 659-669. | MR
[26] S. Sangsuk-Iam, T. Bullok: Analysis of discrete-time Kalman filtering under incorrect noise covariances. IEEE Trans. Automat. Control 35 (1990), 12, 1304-1308. | MR
[27] L. L. Scharf, D. L. Alspach: On stochastic approximation and an adaptive Kalman filter. In: Proc. of the IEEE Decision and Control Conference, 1972, pp. 253-257.
[28] N. K. Sinha: Adaptive Kalman filtering using stochastic approximation. Electr. Letters 9 (1973), 819, 177-178.
[29] N. K. Sinha, A. Tom: Adaptive state estimation systems with unknown noise covariances. Internat. J. Systems Sci. 8 (1977), 4, 377-384.
[30] D. A. Stratton, R. F. Stengel: Robust Kalman filter design for predictive wind shear detection. IEEE Trans. Aerospace Electron. Systems 29 (1993), 4, 1185-1193.
[31] M. Toda, R. V. Patel: Bounds on estimation errors of discrete-time filters under modeling uncertainty. IEEE Trans. Automat. Control 26 (1980), 6, 1115-1121. | MR | Zbl
[32] Ya. Z. Tsypkin: Foundations of Informational Identification Theory. Nauka, Moscow 1984 (in Russian). | MR
[33] W. Vetter: Matrix calculus operations and Taylor expansions. SIAM Rev. 15 (1973), 2, 352-369. | MR | Zbl
[34] L. Xie, Y. Soh: Robust Kalman filtering for uncertain systems. Systems Control Lett. 22 (1994), 123-129. | MR | Zbl