@article{KYB_1996_32_3_a3,
author = {\v{C}elikovsk\'y, Sergej},
title = {Numerical algorithm for nonsmooth stabilization of triangular form systems},
journal = {Kybernetika},
pages = {261--274},
year = {1996},
volume = {32},
number = {3},
mrnumber = {1438219},
zbl = {0873.93074},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1996_32_3_a3/}
}
Čelikovský, Sergej. Numerical algorithm for nonsmooth stabilization of triangular form systems. Kybernetika, Tome 32 (1996) no. 3, pp. 261-274. http://geodesic.mathdoc.fr/item/KYB_1996_32_3_a3/
[1] D. Aeyels: Local and global controllability for nonlinear systems. Systems Control Lett. 5 (1984), 19-26. | MR | Zbl
[2] D. Aeyels: Stabilization of a class of nonlinear systems by a smooth feedback control. Systems Control Lett. 5 (1985), 289-294. | MR | Zbl
[3] P. Brunovský: A classification of linear controllable systems. Kybernetika 6 (1970), 173-180. | MR
[4] J. M. Coron L. Praly, A. Teel: Feedback stabilization of nonlinear systems: sufficient conditions and Lyapunov and input-output techniques. In: Trends in Control: A European Perspective (A. Isidori ed.), Springer-Verlag, London 1995, pp. 293-348. | MR
[5] S. Čelikovský: Topological linearization of nonlinear systems: Application to the nonsmooth stabilization. In: Proc. of the 2nd ECC'93, Groningen 1993, pp. 41-44.
[6] S. Čelikovský: Global linearization of nonlinear systems -- a survey. In: Geometry in Nonlinear Control and Differential Inclusions, Banach Center Publ. 32 (1995), 123-137. | MR
[7] S. Čelikovský: Topological equivalence and topological linearization of controlled dynamical systems. Kybernetika 31 (1995), 141-150. | MR
[8] S. Čelikovský: On the relation between nonsmooth linearization of continuous and discrete time systems. In: Proc. of the third ECC'95, Rome 1995, pp. 643-648.
[9] S. Čelikovský, H. Nijmeijer: Equivalence of nonlinear systems to triangular form: the singular case. Systems Control Lett. 27 (1996), 3, 135-144. | MR
[10] D. Claude: Everything you always wanted to know about linearization but were afraid to ask. In: Algebraic and Geometric Methods in Nonlinear Control Theory (M. Fliess and M. Hazenwinkel, eds.), Reidel, Dordrecht 1986, pp. 181-226. | MR | Zbl
[11] M. Fliess, F. Messager: Vers une stabilisation non lineaire discontinue. In: Anal. Optimiz. Syst. (A. Bensoussau and J. L. Lions, eds., Lecture Notes Control Information Sciences 144), Springer-Verlag, New York 1990, pp. 778-787. | Zbl
[12] B. Jakubczyk, W. Respondek: On linearization of control systems. Bull. Ac. Pol. Sci., Ser. Sci. Math. 28 (1980), 517-522. | MR | Zbl
[13] A. Isidori: Nonlinear Control Systems: An Introduction. Springer-Verlag, Berlin 1989. | MR
[14] R. R. Kadiyala: A tool box for approximate linearization of nonlinear systems. IEEE Control Systems Magazine 1993, 47-57.
[15] T. Kailath: Linear Systems. Prentice Hall, Englewood Cliffs, N.J. 1980. | MR | Zbl
[16] M. Kawski: Stabilization of nonlinear systems in the plane. Systems Control Lett. 12 (1989), 169-175. | MR | Zbl
[17] H. Nijmeijer, A. J. van der Schaft: Nonlinear Dynamical Control Systems. Springer-Verlag, Berlin 1990. | MR | Zbl
[18] C. Simoes H. Nijmeijer, J. Tsinias: Nonsmooth stabilizability and feedback linearization of discrete-time nonlinear systems. Memorandum No. 1190, University of Twente, Netherlands; Internat. J. Robust and Nonlinear Control, to appear. | MR
[19] E. D. Sontag: Feedback stabilization of nonlinear systems. In: Robust Control of Linear Systems and Nonlinear Control -- Proc. Internat. Symp. MTNS-89, Vol. II (M.A. Kaashoek, J. H. van Schuppen and A. C. M. Ran, eds.), Birkhäuser, Boston 1990, pp. 61-81. | MR | Zbl
[20] W. Respondek: Geometric methods in linearization of control systems. Banach Center Publ. 14 (1985), 453-467. | MR | Zbl
[21] W. Respondek: Global aspects of linearization, equivalence to polynomial forms and decomposition of nonlinear control systems. In: Algebraic and Geometric Methods in Nonlinear Control Theory (M. Fliess and M. Hazewinkel, eds.), Reidel, Dordrecht 1986, pp. 257-283. | MR | Zbl
[22] L. A. Zadeh, C. A. Desoer: Linear Systems Theory. McGraw-Hill, New York 1963.