Numerical algorithm for nonsmooth stabilization of triangular form systems
Kybernetika, Tome 32 (1996) no. 3, pp. 261-274 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 93B40, 93C10, 93D15
@article{KYB_1996_32_3_a3,
     author = {\v{C}elikovsk\'y, Sergej},
     title = {Numerical algorithm for nonsmooth stabilization of triangular form systems},
     journal = {Kybernetika},
     pages = {261--274},
     year = {1996},
     volume = {32},
     number = {3},
     mrnumber = {1438219},
     zbl = {0873.93074},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1996_32_3_a3/}
}
TY  - JOUR
AU  - Čelikovský, Sergej
TI  - Numerical algorithm for nonsmooth stabilization of triangular form systems
JO  - Kybernetika
PY  - 1996
SP  - 261
EP  - 274
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1996_32_3_a3/
LA  - en
ID  - KYB_1996_32_3_a3
ER  - 
%0 Journal Article
%A Čelikovský, Sergej
%T Numerical algorithm for nonsmooth stabilization of triangular form systems
%J Kybernetika
%D 1996
%P 261-274
%V 32
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1996_32_3_a3/
%G en
%F KYB_1996_32_3_a3
Čelikovský, Sergej. Numerical algorithm for nonsmooth stabilization of triangular form systems. Kybernetika, Tome 32 (1996) no. 3, pp. 261-274. http://geodesic.mathdoc.fr/item/KYB_1996_32_3_a3/

[1] D. Aeyels: Local and global controllability for nonlinear systems. Systems Control Lett. 5 (1984), 19-26. | MR | Zbl

[2] D. Aeyels: Stabilization of a class of nonlinear systems by a smooth feedback control. Systems Control Lett. 5 (1985), 289-294. | MR | Zbl

[3] P. Brunovský: A classification of linear controllable systems. Kybernetika 6 (1970), 173-180. | MR

[4] J. M. Coron L. Praly, A. Teel: Feedback stabilization of nonlinear systems: sufficient conditions and Lyapunov and input-output techniques. In: Trends in Control: A European Perspective (A. Isidori ed.), Springer-Verlag, London 1995, pp. 293-348. | MR

[5] S. Čelikovský: Topological linearization of nonlinear systems: Application to the nonsmooth stabilization. In: Proc. of the 2nd ECC'93, Groningen 1993, pp. 41-44.

[6] S. Čelikovský: Global linearization of nonlinear systems -- a survey. In: Geometry in Nonlinear Control and Differential Inclusions, Banach Center Publ. 32 (1995), 123-137. | MR

[7] S. Čelikovský: Topological equivalence and topological linearization of controlled dynamical systems. Kybernetika 31 (1995), 141-150. | MR

[8] S. Čelikovský: On the relation between nonsmooth linearization of continuous and discrete time systems. In: Proc. of the third ECC'95, Rome 1995, pp. 643-648.

[9] S. Čelikovský, H. Nijmeijer: Equivalence of nonlinear systems to triangular form: the singular case. Systems Control Lett. 27 (1996), 3, 135-144. | MR

[10] D. Claude: Everything you always wanted to know about linearization but were afraid to ask. In: Algebraic and Geometric Methods in Nonlinear Control Theory (M. Fliess and M. Hazenwinkel, eds.), Reidel, Dordrecht 1986, pp. 181-226. | MR | Zbl

[11] M. Fliess, F. Messager: Vers une stabilisation non lineaire discontinue. In: Anal. Optimiz. Syst. (A. Bensoussau and J. L. Lions, eds., Lecture Notes Control Information Sciences 144), Springer-Verlag, New York 1990, pp. 778-787. | Zbl

[12] B. Jakubczyk, W. Respondek: On linearization of control systems. Bull. Ac. Pol. Sci., Ser. Sci. Math. 28 (1980), 517-522. | MR | Zbl

[13] A. Isidori: Nonlinear Control Systems: An Introduction. Springer-Verlag, Berlin 1989. | MR

[14] R. R. Kadiyala: A tool box for approximate linearization of nonlinear systems. IEEE Control Systems Magazine 1993, 47-57.

[15] T. Kailath: Linear Systems. Prentice Hall, Englewood Cliffs, N.J. 1980. | MR | Zbl

[16] M. Kawski: Stabilization of nonlinear systems in the plane. Systems Control Lett. 12 (1989), 169-175. | MR | Zbl

[17] H. Nijmeijer, A. J. van der Schaft: Nonlinear Dynamical Control Systems. Springer-Verlag, Berlin 1990. | MR | Zbl

[18] C. Simoes H. Nijmeijer, J. Tsinias: Nonsmooth stabilizability and feedback linearization of discrete-time nonlinear systems. Memorandum No. 1190, University of Twente, Netherlands; Internat. J. Robust and Nonlinear Control, to appear. | MR

[19] E. D. Sontag: Feedback stabilization of nonlinear systems. In: Robust Control of Linear Systems and Nonlinear Control -- Proc. Internat. Symp. MTNS-89, Vol. II (M.A. Kaashoek, J. H. van Schuppen and A. C. M. Ran, eds.), Birkhäuser, Boston 1990, pp. 61-81. | MR | Zbl

[20] W. Respondek: Geometric methods in linearization of control systems. Banach Center Publ. 14 (1985), 453-467. | MR | Zbl

[21] W. Respondek: Global aspects of linearization, equivalence to polynomial forms and decomposition of nonlinear control systems. In: Algebraic and Geometric Methods in Nonlinear Control Theory (M. Fliess and M. Hazewinkel, eds.), Reidel, Dordrecht 1986, pp. 257-283. | MR | Zbl

[22] L. A. Zadeh, C. A. Desoer: Linear Systems Theory. McGraw-Hill, New York 1963.