@article{KYB_1996_32_2_a3,
author = {Garc{\'\i}a-P\'erez, Alfonso},
title = {Behaviour of sign test and one sample median test against changes in the model},
journal = {Kybernetika},
pages = {159--173},
year = {1996},
volume = {32},
number = {2},
mrnumber = {1385860},
zbl = {0873.62046},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1996_32_2_a3/}
}
García-Pérez, Alfonso. Behaviour of sign test and one sample median test against changes in the model. Kybernetika, Tome 32 (1996) no. 2, pp. 159-173. http://geodesic.mathdoc.fr/item/KYB_1996_32_2_a3/
[1] R. E. Barlow F. Pгoschan: Statistical Theory of Reliability and Life Testing. Holt, New York 1975. | MR
[2] T. Bednarski: Minimax testing between Prohorov neighbourhoods. Statist. and Decisions 2 (1984), 281-292. | MR | Zbl
[3] Y. Benjamini: Is the $t$ test really conseгvative when the parent distribution is long-tailed?. J. Amer. Statist. Assoc. 78 (1983), 383, 645-654. | MR
[4] A. Buja: Simultaneously least favorable experiments I: Upper standard functionals and sufficiency. Z. Wahrsch. verw. Geb. 65 (1984), 367-384. | MR | Zbl
[5] A. Buja: Simultaneously least favorable experiments II: Upper standard loss functions and their applications. Z. Wahrsch. verw. Geb. 69 (1985), 387-420. | MR
[6] A. Buja: On the Huber-Strassen theorem. Probab. Theory Related Fields 73 (1986), 367-384. | MR | Zbl
[7] C. A. Field E. M. Ronchetti: Small Sample Asymptotics. Institute of Mathematical Statistics, Lecture Notes--Monograph Series, Vol. 13, Hayward, California 1990. | MR
[8] A. García-Pérez: Contraste de hipótesis con modelo variable. Estadística Espaňola 29 (1987), 115, 63-86. | MR
[9] A. García-Pérez: On robustness for hypotheses testing. In: Proc. 47th Session of the International Statistical Institute, Book 1, Paris, France 1989, pp. 363-364.
[10] A. García-Pérez: A note on robustness for hypotheses testing. In: Proc. 2nd Bernoulli Society World Congress and 53rd IMS Annual Meeting, Uppsala, Sweden 1990, p. 105.
[11] A. García-Pérez: A maximin test for approximate hypotheses using a tail ordering. In: Proc. 48th Session of the International Statistical Institute, Book 2, Cairo, Egypt 1991, pp. 527.
[12] A. García-Pérez: On robustness for hypotheses testing. International Statistical Review 61 (1993), 3, 369-385.
[13] P. Hall: The Bootstrap and Edgewoth Expansion. Springer-Verlag, New York 1992. | MR
[14] P. J. Huber: A robust version of the probability ratio test. Ann. Math. Statist. 36 (1965), 1753-1758. | MR | Zbl
[15] P. J. Huber V. Stгassen: Minimax tests and the Neyman-Pearson lemma for capacities. Ann. Statist. 1 (1973), 251-263; 2 (1974), 223-224. | MR
[16] D. Lambert: Influence functions for testing. J. Amer. Statist. Assoc. 76 (1981), 375, 649-657. | Zbl
[17] D. Lambert: Qualitative robustness of tests. J. Amer. Statist. Assoc. 77 (1982), 378, 352-357. | MR | Zbl
[18] D. Lambert: Robust two-sample permutation tests. Ann. Statist. 13 (1985), 606-625. | MR | Zbl
[19] M. J. Lawrence: Inequalities of $s$-ordered distributions. Ann. Statist. 3 (1975), 413-428. | MR | Zbl
[20] N. N. Lebedev: Special functions and their applications. Dover, New York 1972. | MR | Zbl
[21] E. L. Lehmann: Ordered families of distributions. Ann. Math. Statist. 26 (1955), 399-419. | MR | Zbl
[22] Wei-Yin Loh: Bounds on AREs for restricted classes of distributions defined via tail-orderings. Ann. Statist. 12 (1984), 685-701. | MR
[23] N. Reid: Saddlepoint methods and statistical inference. Statistical Science 3 (1988), 2, 213-238. | MR | Zbl
[24] H. Rieder: Least favorable pairs for special capacities. Ann. Statist. 5 (1977) , 909-921. | MR | Zbl
[25] L. P. Rivest: Bartletťs, Cochran's, and Hartley's tests on variances are liberal when the underlying distribution is long-tailed. J. Amer. Statist. Assoc. 81 (1986), 393, 124-128. | MR
[26] P. J. Rousseeuw E. M. Ronchetti: The influence curve for tests. Research Report 21. Fachgruppe für Statistik, ETH, Zurich 1979.
[27] P. J. Rousseeuw E. M. Ronchetti: Influence curves for general statistics. J. Comput. Appl. Math. 7 (1981), 161-166. | MR
[28] W. R. Van Zwet: Convex Transformations of Random Variables. Math. Centrum, Amsterdam 1964. | MR | Zbl