Efficient trust region method for nonlinear least squares
Kybernetika, Tome 32 (1996) no. 2, pp. 105-120 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 65K05, 90C20, 90C30
@article{KYB_1996_32_2_a0,
     author = {Luk\v{s}an, Ladislav},
     title = {Efficient trust region method for nonlinear least squares},
     journal = {Kybernetika},
     pages = {105--120},
     year = {1996},
     volume = {32},
     number = {2},
     mrnumber = {1385857},
     zbl = {0882.65052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1996_32_2_a0/}
}
TY  - JOUR
AU  - Lukšan, Ladislav
TI  - Efficient trust region method for nonlinear least squares
JO  - Kybernetika
PY  - 1996
SP  - 105
EP  - 120
VL  - 32
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_1996_32_2_a0/
LA  - en
ID  - KYB_1996_32_2_a0
ER  - 
%0 Journal Article
%A Lukšan, Ladislav
%T Efficient trust region method for nonlinear least squares
%J Kybernetika
%D 1996
%P 105-120
%V 32
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_1996_32_2_a0/
%G en
%F KYB_1996_32_2_a0
Lukšan, Ladislav. Efficient trust region method for nonlinear least squares. Kybernetika, Tome 32 (1996) no. 2, pp. 105-120. http://geodesic.mathdoc.fr/item/KYB_1996_32_2_a0/

[1] M. Al-Baali R. Fletcher: Variational methods for nonlinear least squares. J. Optim. Theory Appl. 36 (1985), 405-421.

[2] J. E. Dennis D. M. Gay R. E. Welsch: An adaptive nonlinear least-squares algorithm. ACM Trans. Math. Software 7 (1981), 348-368.

[3] J. E. Dennis H. H. W. Mei: An Unconstrained Optimization Algorithm which Uses Function and Gradient Values. Research Report No. TR-75-246. Dept. of Computer Sci., Cornell University 1975.

[4] R. Fletcher: A Modified Marquardt Subroutine for Nonlinear Least Squares. Research Report No.R-6799, Theoretical Physics Division, A.E.R.E. Harwell 1971.

[5] R. Fletcher C. Xu: Hybrid methods for nonlinear least squares. IMA J. Numer. Anal. 7 (1987), 371-389. | MR | Zbl

[6] P. E. Gill W. Murray: Newton type methods for unconstrained and linearly constrained optimization. Math. Programming 7 (1974), 311-350. | MR

[7] M. D. Hebden: An Algorithm for Minimization Using Exact Second Derivatives. Research Report No.TP515, Theoretical Physics Division, A.E.R.E. Harwell 1973.

[8] K. Levenberg: A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math. 2 (1944), 164-168. | MR

[9] L. Lukšan: Computational experience with improved variable metric methods for unconstrained minimization. Kybernetika 26 (1990), 415-431. | MR

[10] D. W. Marquardt: An algorithm for least squares estimation of non-linear parameters. SIAM J. Appl. Math. 11 (1963), 431-441. | MR

[11] J. Militký: Mathematical Models Building. VI. Mineo, Technical House, Ostrava 1989.

[12] J. Militký O. Šenkýř L. Rudišar: Comparison of statistical software for nonlinear regression on IBM PC. In: COMPSTAT 90, Short communications, 1990, pp. 49-50.

[13] J. J. Moré: The Levenberg-Marquardt algorithm. Implementation and theory. In: Numerical Analysis (G. A. Watson ed.), Springer Verlag, Berlin 1978. | MR

[14] J. J. Moré B. S. Garbow K. E. Hillström: Testing unconstrained optimization software. ACM Trans. Math. Software 7 (1981) 17-41. | MR

[15] J. J. Moré D. C. Sorensen: Computing a trust region step. SIAM J. Sci. Statist. Comput. 4 (1983), 553-572. | MR

[16] M. J. D. Powell: A new algorithm for unconstrained optimization. In: Nonlinear Programming (J. B. Rosen, O. L. Mangasarian and K. Ritter, eds.), Academic Press, London 1970. | MR | Zbl

[17] R. B. Schnabel E. Eskow: A new Choleski factorization. SIAM J. Sci. Statist. Comput. 11 (1990), 1136-1158. | MR

[18] G. A. Shultz R. B. Schnabel R. H. Byrd: A family of trust-region-based algorithms for unconstrained minimization with strong global convergence properties. SIAM J. Numer. Anal. 22 (1985) 47-67. | MR