Non-commutative rings of fractions in algebraical approach to control theory
Kybernetika, Tome 32 (1996) no. 1, pp. 81-94 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 16S90, 16S99, 16U20, 93A99, 93B25, 93C05
@article{KYB_1996_32_1_a4,
     author = {Je\v{z}ek, Jan},
     title = {Non-commutative rings of fractions in algebraical approach to control theory},
     journal = {Kybernetika},
     pages = {81--94},
     year = {1996},
     volume = {32},
     number = {1},
     mrnumber = {1380199},
     zbl = {0874.16023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1996_32_1_a4/}
}
TY  - JOUR
AU  - Ježek, Jan
TI  - Non-commutative rings of fractions in algebraical approach to control theory
JO  - Kybernetika
PY  - 1996
SP  - 81
EP  - 94
VL  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_1996_32_1_a4/
LA  - en
ID  - KYB_1996_32_1_a4
ER  - 
%0 Journal Article
%A Ježek, Jan
%T Non-commutative rings of fractions in algebraical approach to control theory
%J Kybernetika
%D 1996
%P 81-94
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_1996_32_1_a4/
%G en
%F KYB_1996_32_1_a4
Ježek, Jan. Non-commutative rings of fractions in algebraical approach to control theory. Kybernetika, Tome 32 (1996) no. 1, pp. 81-94. http://geodesic.mathdoc.fr/item/KYB_1996_32_1_a4/

[1] N. Bourbaki: Théories spectrales. Hermann, Paris 1967. (Russian translation: Mir, Moscow 1972.) | Zbl

[2] W. Greub: Linear Algebra. Springer Verlag, New York 1975. | MR | Zbl

[3] N. Jacobson: Structure of Rings. American Mathematical Society, Providence, R.I. 1956. | MR | Zbl

[4] J. Ježek: An algebraic approach to the synthesis of control for linear discrete meromorphic systems. Kybernetika 25 (1989), 2, 73-85. | MR

[5] J. Ježek: Rings of skew polynomials for algebraical approach to control theory. Kybernetika 32 (1996), 1, 63-80. | MR

[6] O. Øre: Linear equations in non-commutative fields. Ann. of Math. 32 (1931), 463-477. | MR

[7] L. Pernebo: An algebraical theory for the design of controllers for linear multivariable systems, parts I, II. IEEE Trans. Automat. Control AC-26 (1981), 1, 171-194. | MR

[8] H. W. Raudenbush, Jr.: Differential fields and ideals of differential forms. Ann. of Math. 34 (1933), 509-517. | MR | Zbl

[9] R. Y. Sharp: Steps in Commutative Algebra. Cambridge University Press, Cambridge 1990. | MR | Zbl

[10] M. Vidyasagar: Control System Synthesis -- A Fractional Approach. MIT Press, Cambridge, MA 1987. | MR