@article{KYB_1996_32_1_a4,
author = {Je\v{z}ek, Jan},
title = {Non-commutative rings of fractions in algebraical approach to control theory},
journal = {Kybernetika},
pages = {81--94},
year = {1996},
volume = {32},
number = {1},
mrnumber = {1380199},
zbl = {0874.16023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1996_32_1_a4/}
}
Ježek, Jan. Non-commutative rings of fractions in algebraical approach to control theory. Kybernetika, Tome 32 (1996) no. 1, pp. 81-94. http://geodesic.mathdoc.fr/item/KYB_1996_32_1_a4/
[1] N. Bourbaki: Théories spectrales. Hermann, Paris 1967. (Russian translation: Mir, Moscow 1972.) | Zbl
[2] W. Greub: Linear Algebra. Springer Verlag, New York 1975. | MR | Zbl
[3] N. Jacobson: Structure of Rings. American Mathematical Society, Providence, R.I. 1956. | MR | Zbl
[4] J. Ježek: An algebraic approach to the synthesis of control for linear discrete meromorphic systems. Kybernetika 25 (1989), 2, 73-85. | MR
[5] J. Ježek: Rings of skew polynomials for algebraical approach to control theory. Kybernetika 32 (1996), 1, 63-80. | MR
[6] O. Øre: Linear equations in non-commutative fields. Ann. of Math. 32 (1931), 463-477. | MR
[7] L. Pernebo: An algebraical theory for the design of controllers for linear multivariable systems, parts I, II. IEEE Trans. Automat. Control AC-26 (1981), 1, 171-194. | MR
[8] H. W. Raudenbush, Jr.: Differential fields and ideals of differential forms. Ann. of Math. 34 (1933), 509-517. | MR | Zbl
[9] R. Y. Sharp: Steps in Commutative Algebra. Cambridge University Press, Cambridge 1990. | MR | Zbl
[10] M. Vidyasagar: Control System Synthesis -- A Fractional Approach. MIT Press, Cambridge, MA 1987. | MR