Rings of skew polynomials in algebraical approach to control theory
Kybernetika, Tome 32 (1996) no. 1, pp. 63-80 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 16S36, 16S99, 16W20, 16W25, 93A99, 93B25, 93C05
@article{KYB_1996_32_1_a3,
     author = {Je\v{z}ek, Jan},
     title = {Rings of skew polynomials in algebraical approach to control theory},
     journal = {Kybernetika},
     pages = {63--80},
     year = {1996},
     volume = {32},
     number = {1},
     mrnumber = {1380198},
     zbl = {0874.16022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1996_32_1_a3/}
}
TY  - JOUR
AU  - Ježek, Jan
TI  - Rings of skew polynomials in algebraical approach to control theory
JO  - Kybernetika
PY  - 1996
SP  - 63
EP  - 80
VL  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_1996_32_1_a3/
LA  - en
ID  - KYB_1996_32_1_a3
ER  - 
%0 Journal Article
%A Ježek, Jan
%T Rings of skew polynomials in algebraical approach to control theory
%J Kybernetika
%D 1996
%P 63-80
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_1996_32_1_a3/
%G en
%F KYB_1996_32_1_a3
Ježek, Jan. Rings of skew polynomials in algebraical approach to control theory. Kybernetika, Tome 32 (1996) no. 1, pp. 63-80. http://geodesic.mathdoc.fr/item/KYB_1996_32_1_a3/

[1] W. Greub: Linear Algebra. Springer Verlag, New York 1975. | MR | Zbl

[2] N. Jacobson: Structure of Rings. American Mathematical Society, Providence, R.I. 1956. | MR | Zbl

[3] V. Kučera: Discrete Linear Control - The Polynomial Approach. Wiley, Chichester 1979. | MR

[4] O. Øre: Theory of non-commutative polynomials. Ann. of Math. 34 (1933), 480-508. | MR

[5] H. W. Raudenbush, Jr.: Differential fields and ideals of differential forms. Ann. of Math. 34 (1933), 509-517. | MR | Zbl