Rings of skew polynomials in algebraical approach to control theory
Kybernetika, Tome 32 (1996) no. 1, pp. 63-80
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{KYB_1996_32_1_a3,
author = {Je\v{z}ek, Jan},
title = {Rings of skew polynomials in algebraical approach to control theory},
journal = {Kybernetika},
pages = {63--80},
year = {1996},
volume = {32},
number = {1},
mrnumber = {1380198},
zbl = {0874.16022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1996_32_1_a3/}
}
Ježek, Jan. Rings of skew polynomials in algebraical approach to control theory. Kybernetika, Tome 32 (1996) no. 1, pp. 63-80. http://geodesic.mathdoc.fr/item/KYB_1996_32_1_a3/
[1] W. Greub: Linear Algebra. Springer Verlag, New York 1975. | MR | Zbl
[2] N. Jacobson: Structure of Rings. American Mathematical Society, Providence, R.I. 1956. | MR | Zbl
[3] V. Kučera: Discrete Linear Control - The Polynomial Approach. Wiley, Chichester 1979. | MR
[4] O. Øre: Theory of non-commutative polynomials. Ann. of Math. 34 (1933), 480-508. | MR
[5] H. W. Raudenbush, Jr.: Differential fields and ideals of differential forms. Ann. of Math. 34 (1933), 509-517. | MR | Zbl