Dynamic disturbance decoupling for nonlinear discrete-time systems
Kybernetika, Tome 32 (1996) no. 1, pp. 17-42 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 93B27, 93B52, 93C55, 93C73
@article{KYB_1996_32_1_a1,
     author = {Fliegner, Thomas and Nijmeijer, Henk},
     title = {Dynamic disturbance decoupling for nonlinear discrete-time systems},
     journal = {Kybernetika},
     pages = {17--42},
     year = {1996},
     volume = {32},
     number = {1},
     mrnumber = {1380196},
     zbl = {0882.93015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1996_32_1_a1/}
}
TY  - JOUR
AU  - Fliegner, Thomas
AU  - Nijmeijer, Henk
TI  - Dynamic disturbance decoupling for nonlinear discrete-time systems
JO  - Kybernetika
PY  - 1996
SP  - 17
EP  - 42
VL  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_1996_32_1_a1/
LA  - en
ID  - KYB_1996_32_1_a1
ER  - 
%0 Journal Article
%A Fliegner, Thomas
%A Nijmeijer, Henk
%T Dynamic disturbance decoupling for nonlinear discrete-time systems
%J Kybernetika
%D 1996
%P 17-42
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_1996_32_1_a1/
%G en
%F KYB_1996_32_1_a1
Fliegner, Thomas; Nijmeijer, Henk. Dynamic disturbance decoupling for nonlinear discrete-time systems. Kybernetika, Tome 32 (1996) no. 1, pp. 17-42. http://geodesic.mathdoc.fr/item/KYB_1996_32_1_a1/

[1] G. Basile G. Marro: Controlled and conditioned invariant subspaces in linear system theory. J. Optim. Theory Appl. 3 (1969), 306-315. | MR

[2] S. P. Bhattacharyya: Disturbance rejection in linear systems. Internat. J. Systems Sci. 5 (1974), 633-637. | MR | Zbl

[3] M. D. Di Benedetto J. W. Grizzle C. H. Moog: Rank invariants of nonlinear systems. SIAM J. Control Optim. 27 (1989), 658-672. | MR

[4] J. W. Grizzle: Controlled invariance for discrete-time nonlinear systems with an application to the disturbance decoupling problem. IEEE Trans. Automat. Control AC-30 (1985), 868-874. | MR

[5] J. W. Grizzle: A linear algebraic framework for the analysis of discrete-time nonlinear systems. SIAM J. Control Optim. 31 (1993), 1026-1044. | MR | Zbl

[6] R. M. Hirschorn: Invertibility of multivariable nonlinear control systems. IEEE Trans. Automat. Control AC-24 (1979), 1-19. | MR | Zbl

[7] R. M. Hirschorn: $(A,B)$-invariant distributions and disturbance decoupling of nonlinear systems. SIAM J. Control Optim. 19 (1981), 1-19. | MR | Zbl

[8] H. J. C. Huijberts: Dynamic Feedback in Nonlinear Synthesis Problems. PҺ.D. Thesis, University of Twente, Enschede 1991.

[9] H. J. C. Huijberts H. Nijmeijer: Strong dynamic input-output decoupling: From linearity to nonlinearity. In: Proceedings of the IFAC Symposium on Nonlinear Control Systems Design, Bordeaux 1992.

[10] H. J. C. Huijberts H. Nijmeijer L. L. M. van der Wegen: Dynamic disturbance decoupling for nonlinear systems. SIAM J. Control Optim. 30 (1992), 336-349. | MR

[11] H. J. C. Huijberts H. Nijmeijer L. L. M. van der Wegen: Minimality of dynamic input-output decoupling for nonlinear systems. Systems Control Lett. 18 (1992), 435-443. | MR

[12] H. J. C. Huijberts H. Nijmeijer L. L. M. van der Wegen: Dynamic disturbance decoupling for nonlinear systems: The nonsquare and noninvertible case. In: Analysis of Controlled Dynamical Systems (B. Bonnard, B. Bride, J.P. Gauthier and I. Kupka, eds.), Birkhäuser, Boston 1991, pp. 243-252. | MR

[13] A. Ilchmann: Contributions to Time-Varying Linear Control Systems. Verlag an der Lottbek, Ammersbek 1989. | Zbl

[14] A. Ilchmann: Time-varying linear control systems: A geometric approach. IMA J. Math. Control Inform. 6 (1989), 411-440. | MR | Zbl

[15] A. Isidori A. J. Krener C. Gori-Giorgi S. Monaco: Nonlinear decoupling via feedback: a differential geometric approach. IEEE Trans. Automat. Control AC-26 (1981), 331-345. | MR

[16] T. Kaczorek: Linear Control Systems II. Research Studies Press Ltd., Taunton 1993.

[17] Ü. Kotta: Dynamic disturbance decoupling for discrete-time nonlinear systems: the nonsquare and non-invertible case. In: Proc. Estonian Acad. Sci. Phys. Math. 41 (1991), 14-22. | MR

[18] Ü. Kotta H. Nijmeijer: Dynamic Disturbance Decoupling for Discrete-Time Nonlinear Systems. Memorandum No. 913, University of Twente, Enschede 1990.

[19] W. C. A. Maas H. Nijmeijer: Dynamic path controllability in economic models: from linearity to nonlinearity. J. Econom. Dynamics Control 18 (1994), 781-805. | MR

[20] S. Monaco D. Normand-Cyrot: Invariant distributions for discrete time nonlinear systems. Systems Control Lett. 5 (1984), 191-196. | MR

[21] H. Nijmeijer: Local (dynamic) input-output decoupling of discrete time nonlinear systems. IMA J. Math. Control Inform. 4 (1987), 237-250. | MR | Zbl

[22] H. Nijmeijer A. van der Schaft: Nonlinear Dynamical Control Systems. Springer Verlag, New Yoгk 1990. | MR

[23] W. Respondek: Disturbance decoupling via dynamic feedback. In: Analysis of Controlled Dynamical Systems (B. Bonnard, B. Bride, J. P. Gauthier and I. Kupka, eds.), Birkhäuser, Boston 1991, pp. 347-357. | MR | Zbl

[24] L. M. Silverman: Inversion of multivariable linear systems. IEEE Trans. Automat. Contr. AC-14 (1969), 270-276. | MR

[25] S. N. Singh: Generalised decoupled-control synthesis for nonlinear systems. IEE Proceedings 128(1981), 157-161. | MR

[26] W. M. Wonham A. S. Morse: Decoupling and pole assignment in linear multivariable systems: A geometric approach. SIAM J. Control Optim. 8 (1970), 1-18. | MR

[27] W. M. Wonham: Linear Multivariable Control. Springer Verlag, New York 1985. | MR | Zbl