New bounds for robust stability of continuous and discrete-time systems under parametric uncertainty
Kybernetika, Tome 31 (1995) no. 6, pp. 623-636 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 93C41, 93D09
@article{KYB_1995_31_6_a9,
     author = {Konstantopoulos, Ioannis K. and Antsaklis, Panos J.},
     title = {New bounds for robust stability of continuous and discrete-time systems under parametric uncertainty},
     journal = {Kybernetika},
     pages = {623--636},
     year = {1995},
     volume = {31},
     number = {6},
     mrnumber = {1374150},
     zbl = {0872.93065},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1995_31_6_a9/}
}
TY  - JOUR
AU  - Konstantopoulos, Ioannis K.
AU  - Antsaklis, Panos J.
TI  - New bounds for robust stability of continuous and discrete-time systems under parametric uncertainty
JO  - Kybernetika
PY  - 1995
SP  - 623
EP  - 636
VL  - 31
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1995_31_6_a9/
LA  - en
ID  - KYB_1995_31_6_a9
ER  - 
%0 Journal Article
%A Konstantopoulos, Ioannis K.
%A Antsaklis, Panos J.
%T New bounds for robust stability of continuous and discrete-time systems under parametric uncertainty
%J Kybernetika
%D 1995
%P 623-636
%V 31
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1995_31_6_a9/
%G en
%F KYB_1995_31_6_a9
Konstantopoulos, Ioannis K.; Antsaklis, Panos J. New bounds for robust stability of continuous and discrete-time systems under parametric uncertainty. Kybernetika, Tome 31 (1995) no. 6, pp. 623-636. http://geodesic.mathdoc.fr/item/KYB_1995_31_6_a9/

[1] B. R. Barmish: New Tools for Robustness of Linear Systems. Macmillan Publishing Company, New York 1994. | Zbl

[2] D. S. Bernstein, W. M. Haddad: Robust stability and performance analysis for linear dynamic systems. IEEE Trans. Automat. Control 34 (1989), 7, 751-758. | MR | Zbl

[3] C.E. de Souza M. Fu, L. Xie: $H_\infty$ analysis and synthesis of discrete-time systems with time-varying uncertainty. IEEE Trans. Automat. Control 38 (1993), 3, 459-462. | MR

[4] P. Dorato R. Tempo, G. Muscato: Bibliography on robust control. Automatica 25 (1993), 1, 201-213. | MR

[5] M. Fu L. Xie, C. E. de Souza: $H_\infty$ control for linear systems with time-varying parameter uncertainty. In: Control of Uncertain Dynamic Systems (S. P. Bhattacharyya and L. IT Keel, eds.), CRC Press, Boca Raton, FL 1991, pp. 63-75.

[6] Z. Gao, P. J. Antsaklis: Explicit asymmetric bounds for robust stability of continuous and discrete-time systems. IEEE Trans. Automat. Control 55 (1993), 2, 332-335. | MR | Zbl

[7] X. Y. Gu, W. H. Chen: Robust stability analysis for state-space model of discrete-time systems. In: Proc. of 1991 Amer. Contr. Conf., Boston, MA 1991, pp. 890-891.

[8] W. M. Haddad H.-H. Huang, and D. S. Bernstein: Robust stability and performance via fixed-order dynamic compensation: the discrete-time case. In: Proc. of 1992 Amer. Contr. Conf., Chicago, IL 1992, pp. 66-67. | MR

[9] L. H. Keel S. P. Bhattacharyya, J. W. Howze: Robust control with structured perturbations. IEEE Trans. Automat. Control 55 (1988), 1, 68-78. | MR

[10] S. R. Kolla R. K. Yedavalli, J. B. Farison: Robust stability bounds on time-varying perturbations for state-space models of linear discrete-time systems. Internat. J. Control 50 (1989), 1, 151-159. | MR

[11] I. K. Konstantopoulos, P. J. Antsaklis: Robust Stability of Linear Continuous and Discrete-time Systems under Parametric Uncertainty. Research Report No. ISIS-94-006, ISIS Group at the University of Notre Dame 1994.

[12] I. K. Konstantopoulos, P. J. Antsaklis: Robust stabilization of linear continuous systems under parameter uncertainty in all state-space matrices. In: Proc. of 2nd IEEE Mediterranean Symp. on New Directions in Contr. and Automation, Chania, Crete, Greece 1994, pp. 490-497.

[13] I. K. Konstantopoulos, P. J. Antsaklis: Design of Output Feedback Controllers for Robust Stability and Optimal Performance of Discrete-time Systems. Research Report No. ISIS-94-009, ISIS Group at the University of Notre Dame 1994.

[14] H. A. Latchman, J. A. Letra: On the computation of allowable bounds for parametric uncertainty. In: Proc. of 1991 Amer. Contr. Conf., Boston, MA 1991, pp. 867-868.

[15] J. Liu, M.A. Zhody: Performance constrainted stabilization problems of system with uncertainties and perturbations. In: Proc. of 1991 Amer. Contr. Conf., Boston, MA 1991, pp. 3142-3143.

[16] X. Niu, J. A. De Abreu-Garcia: Some discrete-time counterparts to continuous-time stability bounds. In: Proc. of 1991 Amer. Contr. Conf., Boston, MA 1991, pp. 1947-1948.

[17] S. Rem P. T. Kabamba, D. S. Bernstein: A guardian map approach to robust stability of linear systems with constant real parameter uncertainty. In: Proc. of 1992 Amer. Contr. Conf., Chicago, IL 1992, pp. 2649-2652.

[18] D. D. Siljak: Parameter space methods for robust control design: a guided tour. IEEE Trans. Automat. Control 34 (1989), 7, 674-688. | MR | Zbl

[19] J.-H. Su, I.-K. Fong: Robust stability analysis of linear continuous/discrete-time systems with output feedback controllers. IEEE Trans. Automat. Control 38 (1993), 7, 1154-1158. | MR | Zbl

[20] E. Yaz: Deterministic and stochastic robustness measures for discrete systems. IEEE Trans. Automat. Control 33 (1988), 10, 952-955. | MR | Zbl

[21] E. Yaz, X. Niu: New robustness bounds for discrete systems with random perturbations. IEEE Trans. Automat. Control 55 (1993), 12, 1866-1870. | MR | Zbl

[22] R. K. Yedavali, Z. Liang: Reduced conservatism in stability robustness bounds by state transformation. IEEE Trans. Automat. Control 31 (1986), 9, 863-866.

[23] R. K. Yedavali: Stability robustness measures under dependent uncertainty. In: Proc. of 1988 Amer. Contr. Conf., Atlanta, GA 1988, pp. 820-823.

[24] K. M. Zhou, P. P. Khargonekar: Stability robustness bounds for linear state space models with structured uncertainty. IEEE Trans. Automat. Control 32 (1987), 7, 621-623. | MR | Zbl

[25] K. Zhou P. P. Khargonekar J. Stoustrup, and H. H. Niemann: Robust stability and performance of uncertain systems in state space. In: Proc. 25th IEEE Conf. Decision Contrl., Tucson, AZ 1992, pp. 662-667.