@article{KYB_1995_31_6_a7,
author = {Amato, Francesco and Pironti, Alfredo},
title = {Singular finite horizon full information $\cal H^\infty$ control via reduced order {Riccati} equations},
journal = {Kybernetika},
pages = {601--611},
year = {1995},
volume = {31},
number = {6},
mrnumber = {1374148},
zbl = {0863.93026},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1995_31_6_a7/}
}
TY - JOUR AU - Amato, Francesco AU - Pironti, Alfredo TI - Singular finite horizon full information $\cal H^\infty$ control via reduced order Riccati equations JO - Kybernetika PY - 1995 SP - 601 EP - 611 VL - 31 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_1995_31_6_a7/ LA - en ID - KYB_1995_31_6_a7 ER -
Amato, Francesco; Pironti, Alfredo. Singular finite horizon full information $\cal H^\infty$ control via reduced order Riccati equations. Kybernetika, Tome 31 (1995) no. 6, pp. 601-611. http://geodesic.mathdoc.fr/item/KYB_1995_31_6_a7/
[1] F. Amato, A. Pironti: A note on singular zero-sum linear quadratic differential games. In: Proceedings of the 33rd IEEE Conference or. Decision and Control, Orlando 1994.
[2] T. Basar, G. J. Olsder: Dynamic Noncooperative Game Theory. Academic Press, New York 1989. | MR
[3] S. Butman: A method for optimizing control-free costs in systems with linear controllers. IEEE Trans. Automat. Control 13 (1968), 554-556. | MR
[4] J. W. Helton M. L. Walker, W. Zhan: ${\cal H}^\infty$ control using compensators with access to the command signals. In: Proceedings of the 31st Conference on Decision and Control, Tucson 1992.
[5] D. J. N. Limebeer B. D. O. Anderson P. P. Khargonekar, M. Green: A game theoretic approach to ${\cal H}^\infty$ control for time-varying systems. SIAM J. Control Optim. 30 (1992), 262-283. | MR
[6] R. Ravi K. M. Nagpal, P. P. Khargonekar: ${\cal H}^\infty$ control of linear time-varying systems: a state space approach. SIAM J. Control Optim. 29 (1991), 1394-1413. | MR
[7] J. L. Speyer, D. H. Jacobson: Necessary and sufficient condition for optimality for singular control problem. J. Math. Anal. Appl. 33 (1971). | MR
[8] A. A. Stoorvogel, H. Trentelman: The quadratic matrix inequality in singular ${\cal H}^\infty$ control with state feedback. SIAM J. Control Optim. 28 (1990), 1190-1208. | MR
[9] G. Tadmor: Worst-case design in time domain: the maximum principle and the standard ${\cal H}^\infty$ problem. Math. Control Signals Systems 3 (1990), 301-324. | MR