Exact decomposition of linear singularly perturbed $H^{\infty}$-optimal control problem
Kybernetika, Tome 31 (1995) no. 6, pp. 591-599 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 93B36, 93C05, 93C70, 93C73
@article{KYB_1995_31_6_a6,
     author = {Fridman, Emilia},
     title = {Exact decomposition of linear singularly perturbed $H^{\infty}$-optimal control problem},
     journal = {Kybernetika},
     pages = {591--599},
     year = {1995},
     volume = {31},
     number = {6},
     mrnumber = {1374147},
     zbl = {0864.93041},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1995_31_6_a6/}
}
TY  - JOUR
AU  - Fridman, Emilia
TI  - Exact decomposition of linear singularly perturbed $H^{\infty}$-optimal control problem
JO  - Kybernetika
PY  - 1995
SP  - 591
EP  - 599
VL  - 31
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1995_31_6_a6/
LA  - en
ID  - KYB_1995_31_6_a6
ER  - 
%0 Journal Article
%A Fridman, Emilia
%T Exact decomposition of linear singularly perturbed $H^{\infty}$-optimal control problem
%J Kybernetika
%D 1995
%P 591-599
%V 31
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1995_31_6_a6/
%G en
%F KYB_1995_31_6_a6
Fridman, Emilia. Exact decomposition of linear singularly perturbed $H^{\infty}$-optimal control problem. Kybernetika, Tome 31 (1995) no. 6, pp. 591-599. http://geodesic.mathdoc.fr/item/KYB_1995_31_6_a6/

[1] T. Basar, P. Bernhard: $H^\infty$-Optimal Control and Related Minimax Design Problems: a Dynamic Game Approach. Birkhauser, Boston 1991. | MR

[2] J. Doyle K. Glover P. Khargonekar, B. Francis: State-space solutions to standard $H_2$ and $H_\infty$ control. IEEE Trans. Automat. Control 34 (1989), 831-847. | MR

[3] V. Dragan: Asymptotic expansions for game-theoretic Riccati equations and stabilization with disturbance attenuation for singularly perturbed systems. Systems Control Lett. 20 (1993), 455-463. | MR | Zbl

[4] E. Fridman: Decomposition of linear optimal singularly perturbed systems with time delay. Automat. Remote Control 51 (1990), 1518-1527. | MR

[5] E. Fridman: $H^\infty$-control of nonlinear singularly perturbed systems and invariant manifolds. Ann. Int. Society on Dynamic Games, Birkhauser 1995, to appear. | MR | Zbl

[6] T. Grodt, Z. Gajic: The recursive reduced-order numerical solution of the singularly perturbed matrix differential Riccati equation. IEEE Trans. Automat. Control AC-33 (1988), 751-754. | MR | Zbl

[7] K. Khalil, F. Chen: $H^\infty$-control of two-time-scale systems. Systems Control Lett. 19 (1992), 1, 35-42. | MR

[8] P. Kokotovic H. Khalil, J. O'Reilly: Singular Perturbation Methods in Control: Analysis and Design. Academic Press, New York 1986. | MR

[9] D. Luse, J. Ball: Frequency-scale decomposition of $H^\infty$-disk problems. SIAM J. Control Optim. 27 (1989), 814-835. | MR

[10] Z. Pan, T. Basar: $H^\infty$-optimal control for singularly perturbed systems. Part I: Perfect State Measurements. Automatica 2 (1993), 401-424. | MR | Zbl

[11] V. Sobolev: Integral manifolds and decomposition of singularly perturbed systems. Systems Control Lett. 5 (1984), 169-179. | MR | Zbl

[12] W. C. Su Z. Gajic, X. Shen: The exact slow-fast decomposition of the algebraic Riccati equation of singularly perturbed systems. IEEE Trans. Automat. Control AC-57 (1992), 9, 1456-1459. | MR | Zbl