Observability of saturated systems with an offset
Kybernetika, Tome 31 (1995) no. 6, pp. 581-590 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 93B05, 93B07, 93B28, 93C10
@article{KYB_1995_31_6_a5,
     author = {Hautus, M. L. J.},
     title = {Observability of saturated systems with an offset},
     journal = {Kybernetika},
     pages = {581--590},
     year = {1995},
     volume = {31},
     number = {6},
     mrnumber = {1374146},
     zbl = {0861.93002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1995_31_6_a5/}
}
TY  - JOUR
AU  - Hautus, M. L. J.
TI  - Observability of saturated systems with an offset
JO  - Kybernetika
PY  - 1995
SP  - 581
EP  - 590
VL  - 31
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1995_31_6_a5/
LA  - en
ID  - KYB_1995_31_6_a5
ER  - 
%0 Journal Article
%A Hautus, M. L. J.
%T Observability of saturated systems with an offset
%J Kybernetika
%D 1995
%P 581-590
%V 31
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1995_31_6_a5/
%G en
%F KYB_1995_31_6_a5
Hautus, M. L. J. Observability of saturated systems with an offset. Kybernetika, Tome 31 (1995) no. 6, pp. 581-590. http://geodesic.mathdoc.fr/item/KYB_1995_31_6_a5/

[1] H. Bohr: Almost Periodic Functions. Chelsca, New York 1947. | MR

[2] R. Koplon: Linear Systems with Constгained Outputs and Transitions. Thesis, Dept. of Math. New Brunswick, New Jersey, October 1994.

[3] R. Koplon E. D. Sontag, M. L. J. Hautus: Observability of linear systems with saturated outputs. Linear Algebra Appl. 205/206 (1994), 909-936. | MR

[4] R. Schwarzschild E. D. Sontag, M. L. J. Hautus: Output-saturated systems. In: Proc. Amer. Control Conf., Chicago 1992, pp. 2504-2509.

[5] E. D. Sontag: An algebraic approach to bounded controllability of linear systems. Internat. J. Control 39 (1984), 181-188. | MR | Zbl