Observability of saturated systems with an offset
Kybernetika, Tome 31 (1995) no. 6, pp. 581-590
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{KYB_1995_31_6_a5,
author = {Hautus, M. L. J.},
title = {Observability of saturated systems with an offset},
journal = {Kybernetika},
pages = {581--590},
year = {1995},
volume = {31},
number = {6},
mrnumber = {1374146},
zbl = {0861.93002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1995_31_6_a5/}
}
Hautus, M. L. J. Observability of saturated systems with an offset. Kybernetika, Tome 31 (1995) no. 6, pp. 581-590. http://geodesic.mathdoc.fr/item/KYB_1995_31_6_a5/
[1] H. Bohr: Almost Periodic Functions. Chelsca, New York 1947. | MR
[2] R. Koplon: Linear Systems with Constгained Outputs and Transitions. Thesis, Dept. of Math. New Brunswick, New Jersey, October 1994.
[3] R. Koplon E. D. Sontag, M. L. J. Hautus: Observability of linear systems with saturated outputs. Linear Algebra Appl. 205/206 (1994), 909-936. | MR
[4] R. Schwarzschild E. D. Sontag, M. L. J. Hautus: Output-saturated systems. In: Proc. Amer. Control Conf., Chicago 1992, pp. 2504-2509.
[5] E. D. Sontag: An algebraic approach to bounded controllability of linear systems. Internat. J. Control 39 (1984), 181-188. | MR | Zbl