Controllability indices of linear systems with delays
Kybernetika, Tome 31 (1995) no. 6, pp. 559-580 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34K35, 93B05, 93C05, 93C30, 93C99
@article{KYB_1995_31_6_a4,
     author = {Sename, Olivier and Lafay, Jean-Fran\c{c}ois and Rabah, Rabah},
     title = {Controllability indices of linear systems with delays},
     journal = {Kybernetika},
     pages = {559--580},
     year = {1995},
     volume = {31},
     number = {6},
     mrnumber = {1374145},
     zbl = {0864.93023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1995_31_6_a4/}
}
TY  - JOUR
AU  - Sename, Olivier
AU  - Lafay, Jean-François
AU  - Rabah, Rabah
TI  - Controllability indices of linear systems with delays
JO  - Kybernetika
PY  - 1995
SP  - 559
EP  - 580
VL  - 31
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1995_31_6_a4/
LA  - en
ID  - KYB_1995_31_6_a4
ER  - 
%0 Journal Article
%A Sename, Olivier
%A Lafay, Jean-François
%A Rabah, Rabah
%T Controllability indices of linear systems with delays
%J Kybernetika
%D 1995
%P 559-580
%V 31
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1995_31_6_a4/
%G en
%F KYB_1995_31_6_a4
Sename, Olivier; Lafay, Jean-François; Rabah, Rabah. Controllability indices of linear systems with delays. Kybernetika, Tome 31 (1995) no. 6, pp. 559-580. http://geodesic.mathdoc.fr/item/KYB_1995_31_6_a4/

[1] M. Kono: Decoupling and arbitrary coefficient assignment in time-delay systems. Systems Control Lett. 3 (1983), 6, 349-354. | MR | Zbl

[2] E. B. Lee, W. S. Lu: Coefficient assignability for linear systems with delays. IEEE Trans. Automat. Control AC-29 (1984), 11. | MR | Zbl

[3] E. B. Lee S. Neftci, A. W. Olbrot: Canonical forms for time-delay systems. IEEE Trans. Automat. Control AC-27 (1982), 1, 128-132. | MR

[4] E. B. Lee, A. W. Olbrot: Observability and related structural results for linear hereditary systems. Internat. J. Control 34 (1981), 6, 1061-1078. | MR | Zbl

[5] D. G. Luenberger: Canonical forms for linear multivariable systems. IEEE Trans. Automat. Control AC-12 (1967), 3, 290-293. | MR

[6] A. S. Morse: Ring models for delay differential systems. Automatica 12 (1976), 529-531. | MR | Zbl

[7] A. W. Olbrot: On controllability of linear systems with time delay in control. IEEE Trans. Automat. Control 17 (1972), 664-666. | MR

[8] E. D. Sontag: Linear systems over commutative rings; a survey. Ricerche Automat. 7 (1976), 1.

[9] O. Sename J. F. Lafay, R. Rabah: Controllability indices of linear systems with delays. In: Proceedings of the 2nd IEEE Mediterranean Symposium on New Directions in Control and Automation, 1994, Maleme-Chania, Crete, Greece.

[10] A. C. Tsoi: Recent advances in the algebraic system theory of delay differential equations. In: Recent Theoretical Developments in Control (M. J. Gregson, ed.), Academic Press, 1978, pp. 67-127. | MR | Zbl

[11] W. M. Wonham: Linear Multivariable Control: A Geometric Approach. Springer-Verlag, New York 1979. | MR | Zbl

[12] L. Weiss: An algebraic criterion for controllability of linear systems with time-delay. IEEE Trans. Automat. Control 15 (1970), 443-444. | MR