Exponential rate of convergence of maximum likelihood estimators for inhomogeneous Wiener processes
Kybernetika, Tome 31 (1995) no. 5, pp. 489-507 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 60J65, 62F12, 62M05
@article{KYB_1995_31_5_a5,
     author = {Liese, Friedrich and Wienke, Andreas},
     title = {Exponential rate of convergence of maximum likelihood estimators for inhomogeneous {Wiener} processes},
     journal = {Kybernetika},
     pages = {489--507},
     year = {1995},
     volume = {31},
     number = {5},
     mrnumber = {1361310},
     zbl = {0858.62071},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1995_31_5_a5/}
}
TY  - JOUR
AU  - Liese, Friedrich
AU  - Wienke, Andreas
TI  - Exponential rate of convergence of maximum likelihood estimators for inhomogeneous Wiener processes
JO  - Kybernetika
PY  - 1995
SP  - 489
EP  - 507
VL  - 31
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1995_31_5_a5/
LA  - en
ID  - KYB_1995_31_5_a5
ER  - 
%0 Journal Article
%A Liese, Friedrich
%A Wienke, Andreas
%T Exponential rate of convergence of maximum likelihood estimators for inhomogeneous Wiener processes
%J Kybernetika
%D 1995
%P 489-507
%V 31
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1995_31_5_a5/
%G en
%F KYB_1995_31_5_a5
Liese, Friedrich; Wienke, Andreas. Exponential rate of convergence of maximum likelihood estimators for inhomogeneous Wiener processes. Kybernetika, Tome 31 (1995) no. 5, pp. 489-507. http://geodesic.mathdoc.fr/item/KYB_1995_31_5_a5/

[1] K. Dzhaparidze, E. Valkeila: On the Hellinger type distances for filtered experiments. Probab. Theory Related Fields 85 (1990), 105-117. | MR | Zbl

[2] I. A. Ibragimov, R. Z. Hasminskij: Asymptotic Estimation Theory. (in Russian). Nauka, Moscow 1979.

[3] J. Jacod: Random Sampling in Estimation Problems for Continuous Gaussian Processes with Independent Increments. Preprint No. 57 Laboratoire de Probabiltes de l' Universite Paris V. | MR | Zbl

[4] F. Liese, I. Vajda: Convex Statistical Distances. Teubner-Verlag, Leipzig 1987. | MR | Zbl

[5] F. Liese, A. Wienke: Asymptotische Normalitat von Maximum-Likelihood- Schatzern in inhomogenen Wienerprozessen. Rostock. Math. Kolloq. 47 (1994), 31-48. | MR

[6] T. Pfaff: Quick consistency of quasi maximum likelihood estimators. Ann. Math. Statist. 10 (1982), 3, 900-1005. | MR | Zbl

[7] A. Renyi: Wahrscheinlichkeitsrechnung mit einem Anhang über Informationstheorie. VEB Deutscher Verlag der Wissenschaften, Berlin 1977. | MR | Zbl