@article{KYB_1995_31_5_a0,
author = {Kramosil, Ivan},
title = {Approximations of believability functions under incomplete identification of sets of compatible states},
journal = {Kybernetika},
pages = {425--450},
year = {1995},
volume = {31},
number = {5},
mrnumber = {1361305},
zbl = {0869.62007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1995_31_5_a0/}
}
Kramosil, Ivan. Approximations of believability functions under incomplete identification of sets of compatible states. Kybernetika, Tome 31 (1995) no. 5, pp. 425-450. http://geodesic.mathdoc.fr/item/KYB_1995_31_5_a0/
[1] A. P. Dempster: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Statist. 38 (1967), 325-339. | MR | Zbl
[2] P. Hájek T. Havránek, R. Jiroušek: Uncertain Information Processing in Expert Systems. CRC Press, California 1991. | MR
[3] I. Kramosil: An intensional interpretation and generalization of Dempster-Shafer approach to uncertainty processing. In: Logica 93 - Proceedings of the 7th International Symposium (P. Kolaf and V. Svoboda, eds.), Filosofia - Publishing House of the Institute of Philosophy of the Academy of Sciences of the Czech Republic, Prague 1994, pp. 105-122.
[4] E. L. Lehmann: Testing Statistical Hypotheses. Wiley, New York 1947. | MR
[5] J. Pearl: Probabilistic Reasoning in Intelligent Systems - Networks of Plausible Inference. Morgan Kaufmann Publishers, Inc., San Matteo, California 1988. | MR
[6] G. Shafer: A Mathematical Theory of Evidence. Princeton Univ. Press, Princeton, New Jersey 1976. | MR | Zbl
[7] P. Smets: Belief functions. In: Nonstandard Logics for Automated Reasoning (P. Smets, A. Mamdani, D. Dubois and H. Prade, eds.), Academic Press, London 1988, pp. 253-286. | MR
[8] P. Smets: The nature of the unnormalized beliefs encountered in the transferable belief model. In: Uncertainty in AI92 (D. Dubois, M. P. Wellman, B. d'Ambrosio and P. Smets, eds.), Morgan Kaufmann, San Matteo, California 1992, pp. 292-297.
[9] P. Smets: Belief functions: the disjunctive rule of combination and the generalized bayesian theorem. Internat. J. Approx. Reason. 7 (1993), 1-35. | MR | Zbl
[10] A. Wald: Sequential Analysis. Wiley, New York 1947. | MR | Zbl