@article{KYB_1995_31_4_a3,
author = {Koubkov\'a, Alena},
title = {Two special models of $AR(n)$ processes with time-dependent random parameters},
journal = {Kybernetika},
pages = {347--357},
year = {1995},
volume = {31},
number = {4},
mrnumber = {1357349},
zbl = {0857.62088},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1995_31_4_a3/}
}
Koubková, Alena. Two special models of $AR(n)$ processes with time-dependent random parameters. Kybernetika, Tome 31 (1995) no. 4, pp. 347-357. http://geodesic.mathdoc.fr/item/KYB_1995_31_4_a3/
[1] J. Anděl: Statistische Analyse von Zeitreihen. Akademie Verlag, Berlin 1984. | MR
[2] J. Anděl: Autoregressive series with random parameters. Math. Operationsforsch. Statist. 7 (1976), 735-741. | MR
[3] A. Brandt: The stochastic equation $Y_n + 1 = A_nY_n + B_n$ with stationary coefficients. Adv. in Appl. Prob. 18 (1986), 211-220. | MR
[4] J. Conlisk: Stability in a random coefficient model. Internat. Econom. Rev. 15 (1974), 529-533. | MR | Zbl
[5] J. Conlisk: A further note on stability in a random coefficient model. Econom. Rev. 17 (1976), 759-764. | Zbl
[6] A. Koubková: First-order autoregressive processes with time-dependent random parameters. Kybernetika 18 (1982), 408-414. | MR
[7] A. Koubková: Časové řady s náhodnými parametry. PҺD Thesis, Praha 1986 (in Czech).
[8] A. Koubková: Random coefficient AR(1) process. In: Trans. Tenth Prague Conf. on Inform. Theory, Stat. Dec. Functions and Random Proc, Academia, Prague 1988, pp. 51-58. | MR
[9] D. P. Nicholls, B. G. Quinn: Random coefficient autoregressive models: An introduction. Springer-Verlag, New Үork-Heidelberg-Berlin 1982. | MR | Zbl
[10] D. Tjøstheim: Some doubly stochastic time series models. J. Time Ser. Anal. 7(1986), 51-72. | MR
[11] A. A. Weiss: The stability of the AR(1) process with an AR(1) coefficients. J. Time Ser. Anal. 6 (1986), 181-186. | MR