Minimum entropy of error estimate for multi-dimensional parameter and finite-state-space observations
Kybernetika, Tome 31 (1995) no. 4, pp. 331-335 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62B10, 62F10, 94A17
@article{KYB_1995_31_4_a1,
     author = {Ot\'ahal, Anton{\'\i}n},
     title = {Minimum entropy of error estimate for multi-dimensional parameter and finite-state-space observations},
     journal = {Kybernetika},
     pages = {331--335},
     year = {1995},
     volume = {31},
     number = {4},
     mrnumber = {1357347},
     zbl = {0857.62003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1995_31_4_a1/}
}
TY  - JOUR
AU  - Otáhal, Antonín
TI  - Minimum entropy of error estimate for multi-dimensional parameter and finite-state-space observations
JO  - Kybernetika
PY  - 1995
SP  - 331
EP  - 335
VL  - 31
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_1995_31_4_a1/
LA  - en
ID  - KYB_1995_31_4_a1
ER  - 
%0 Journal Article
%A Otáhal, Antonín
%T Minimum entropy of error estimate for multi-dimensional parameter and finite-state-space observations
%J Kybernetika
%D 1995
%P 331-335
%V 31
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_1995_31_4_a1/
%G en
%F KYB_1995_31_4_a1
Otáhal, Antonín. Minimum entropy of error estimate for multi-dimensional parameter and finite-state-space observations. Kybernetika, Tome 31 (1995) no. 4, pp. 331-335. http://geodesic.mathdoc.fr/item/KYB_1995_31_4_a1/

[1] S. Ikeda: Continuity and characterization of Shannon-Wiener information measure for continuous probability distributions. Ann. Inst. Statist. Math. 11 (1959), 131-144. | MR | Zbl

[2] M. Janžura T. Koski, A. Otáhal: Minimum entropy of error principle in estimation. Inform. Sci., to appear.

[3] M. Janžura T. Koski, A. Otáhal: Minimum entropy of error principle in estimation: a short survey. In: Proceedings of 6th Joint Swedish-Russian Internat. Workshop on Inform. Theory, Moelle 1993, pp. 429-431.

[4] A. Otáhal: Finiteness and Continuity of Differential Entropy. Asymptotic Statistics. In: Procee lings of 5th Prague Symposium on Asymptotic Statistics (P. Mandl and M. Huskova, eds.), Physica-Verlag, Heidelberg 1993, pp. 415-419. | MR

[5] I. Vajda: Theory of Statistical Inference and Information. Kluwer, Dodrecht-Boston-London 1989. | Zbl

[6] H. L. Weidemann, E. B. Stear: Entropy analysis of parameter estimation. Inform, and Control 14 (1969), 493-506. | MR | Zbl

[7] H. L. Weidemann, E. B. Stear: Entropy analysis of estimation systems. IEEE Trans. Inform. Theory 16 (1970), 264-270. | MR