The Hájek asymptotics for finite population sampling and their ramifications
Kybernetika, Tome 31 (1995) no. 3, pp. 251-268 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 60F05, 60G42, 62D05
@article{KYB_1995_31_3_a4,
     author = {Sen, Pranab Kumar},
     title = {The {H\'ajek} asymptotics for finite population sampling and their ramifications},
     journal = {Kybernetika},
     pages = {251--268},
     year = {1995},
     volume = {31},
     number = {3},
     mrnumber = {1337980},
     zbl = {0837.62014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1995_31_3_a4/}
}
TY  - JOUR
AU  - Sen, Pranab Kumar
TI  - The Hájek asymptotics for finite population sampling and their ramifications
JO  - Kybernetika
PY  - 1995
SP  - 251
EP  - 268
VL  - 31
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1995_31_3_a4/
LA  - en
ID  - KYB_1995_31_3_a4
ER  - 
%0 Journal Article
%A Sen, Pranab Kumar
%T The Hájek asymptotics for finite population sampling and their ramifications
%J Kybernetika
%D 1995
%P 251-268
%V 31
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1995_31_3_a4/
%G en
%F KYB_1995_31_3_a4
Sen, Pranab Kumar. The Hájek asymptotics for finite population sampling and their ramifications. Kybernetika, Tome 31 (1995) no. 3, pp. 251-268. http://geodesic.mathdoc.fr/item/KYB_1995_31_3_a4/

[1] T.W. Anderson: A modification of the sequential probibility ratio test to reduce the sample size. Ann. Math. Statist. 31 (1960), 165-197. | MR

[2] S. K. Chatterjee, P. K. Sen: Nonparametric tests for the bivariate two-sample location problem. Calcutta Statist. Assoc. Bulł. 13 (1964), 18-58. | MR

[3] J. L. Doob: Heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Statist. 20 (1949), 393-403. | MR | Zbl

[4] J. Dupačová: A note on rejective sampling. In: Contributions to Statistics (J. Hájek Memorial Volume), (J. Jurečková, ed.), Academia, Prague and Reidel, Dordrecht 1979, pp. 72-78. | MR

[5] J. Hájek: Optimum strategy and other problems in probabiłity sampling. Časopis pro pěstování mat. 84 (1959), 387-423. | MR

[6] J. Hájek: Some extensions of the Wald-Wolfowitz-Noether theorem. Ann. Math. Statist. 32 (1961), 506-523. | MR

[7] J. Hájek: Asymptotically most powerful rank order tests. Ann. Math. Statist. 33 (1962), 1124-1147. | MR

[8] J. Hájek: Asymptotic theory of rejective sampling with varying probabilities from a finite population. Ann. Math. Statist. 35 (1964), 1491-1523. | MR

[9] J. Hájek: Extensions of the Kolmogorov-Smirnov tests to regression alternatives. In: Proc. Bernoulli-Bayes-Laplace Seminar, Berkeley (L. LeCam, ed.), Univ. of Calif. Press 1965, pp. 45-60. | MR

[10] J. Hájek: Asymptotic normality of simple linear rank statistics under alternatives. Ann. Math. Statist. 39 (1968), 325-346. | MR

[11] J. Hájek: Asymptotic theory of sampling with varying probabilities without replacement. In: Proc. Prague Symp. Asymp. Statist. 1973, pp. 127-138. | MR

[12] J. Hájek: Sampling from a Finite Population. Marcel Dekker, New York 1981. | MR

[13] J. Hájek, A. Rényi: Generalization of an inequality of Kolmogorov. Acta. Math. Acad. Sci. Hung. 6 (1955), 281. | MR

[14] J. Hájek, Z. Šidák: Theory of Rank Tests. Academia, Prague 1967. | MR

[15] W. Hoeffding: A class of statistics with asymptotically normal distribution. Ann. Math. Statist. 19 (1948), 293-325. | MR | Zbl

[16] W. Hoeffding: A combinatorial central limit theorem. Ann Math. Statist. 22 (1951), 558-566. | MR | Zbl

[17] L. Holst: Asymptotic normality in a generalized occupancy problem. Z. Wahrsch. verw. Geb. 21 (1972), 109-120. | MR | Zbl

[18] S. Karlin: Inequalities for symmetric sampling plans I. Ann. Statist. 2 (1974), 1065-1094. | MR

[19] W. G. Madow: On the limiting distributions of estimates based on samples from finite universes. Ann. Math. Statist. 19 (1948), 535-545. | MR | Zbl

[20] H. Majumdar, P. K. Sen: Invariance principles for jackknifing U-statistics for finite population sampling and some applications. Comm. Statist. A7 (1978), 1007-1025. | MR | Zbl

[21] M. Motoo: On the Hoeffding's combinatorial central limit theorem. Ann. Inst. Statist. Math. 8 (1957), 145-154. | MR | Zbl

[22] H. K. Nandi, P. K. Sen: On the properties of U-statistics when the observations are not independent. Part II. Unbiased estimation of the parameters of a finite population. Calcutta Statist. Assoc. Bull. 12 (1963), 125-143. | MR

[23] G. E. Noether: On a theorem by Wald and Wolfowitz. Ann. Math. Statist. 20 (1949), 455-458. | MR | Zbl

[24] Z. Pгášková: Rate of convergence for simple estimate in the rejective sampling. In: Probability and Statistical Inference (W. Grossmann et al., eds.), Reidel, Dordrecht 1982, pp. 307-317. | MR

[25] Z. Prášková: On the probability of very large deviations for the rejective sampling. In: Asymptotic Statistics 2, Proc. 3rd Prague Symp. on Asymptotic Statistics (P. Mandl and M. Hušková, eds.), North-Holland, Amsterdam 1984, pp. 387-389. | MR

[26] Z. Prášková: On the rate of convergence in Sampford-Durbin sampling from a finite population. Statist. Decisions 2 (1984), 339-350. | MR

[27] Z. Prášková: On the convergence to the Poisson distribution in rejective sampling from a finite population. In: Probability and Mathematical Statistics with Applications (Visegrad 1985, W. Grossmann et al. eds.), Reidel, Dordrecht 1985, pp. 285-294. | MR

[28] Z. Prášková: Sampling from a finite set of random variables: The Berry-Eseen bound for the studentized mean. In: Proc. 4th Prague Symp. on Asymptotic Statistics (P. Mandl and M. Hušková, eds.), Charles University, Prague 1988, pp. 67-81. | MR

[29] Z. Prášková: A note on Sampford-Durbin sampling. Comment. Math. Univ. Carolinae 31 (1990), 367-372. | MR

[30] M. L. Puri, P. K. Sen: Nonparametric Methods in Multivariate Analysis. Wiley, New York 1971. | MR | Zbl

[31] B. Rosen: Asymptotic normality in a coupon collector's problem. Zeit. Wahrsch. verw. Geb. 15 (1969), 256-279. | MR | Zbl

[32] B. Rosen: On the coupon collectors waiting time. Ann. Math. Statist. 41 (1970), 1952-1969. | MR

[33] B. Rosen: Asymptotic theory for successive sampling with varying probabilities without replacement, I, II. Ann. Math. Statist. 43 (1972), 373-397, 748-776. | MR | Zbl

[34] M. R. Sampford: On sampling without replacement with unequal probabilities of selection. Biometrika 54 (1967), 499-513. | MR

[35] M. R. Sampford: A comparison of some possible methods of sampling from smallish populations, with units of unequal size. In: New Developments in Survey Sampling (N.L. Johnson and H. Smith, eds.), Wiley, New York 1969.

[36] P. K. Sen: The Hájek-Renyi inequality for sampling from a finite population. Sankhya A 32 (1970), 181-188. | Zbl

[37] P. K. Sen: Finite population sampling and weak convergence to a Brownian bridge. Sankya A 34 (1972), 85-90. | MR | Zbl

[38] P. K. Sen: Invariance principles for the coupon collector's problem: A martingale approach. Ann. Statist. 7 (1979), 372-380. | MR | Zbl

[39] P. K. Sen: Weak convergence of some quantile processes arising in progressively censored tests. Ann. Statist. 7 (1979), 414-431. | MR | Zbl

[40] P. K. Sen: Limit theorems for an extended coupon collector's problem and for successive sampling with varying probabilities. Calcutta Statist. Assoc. Bull. 29 (1980), 113-132. | MR

[41] P. K. Sen: Sequential Nonparametrics: Invariance Principles and Statistical Inference. Wiley, New York 1981. | MR | Zbl

[42] P. K. Sen: A renewal theorem for an urn model. Ann. Probab. 10 (1982), 838-843. | MR | Zbl

[43] P. K. Sen: On the asymptotic normality in sequential sampling tagging. Sankhya A 44 (1982), 352-363. | MR

[44] P. K. Sen: On permutational central limit theorems for general multivariate linear rank statistics. Sankhya A 45 (1983), 141-149. | MR | Zbl

[45] P. K. Sen: Asymptotics in finite population sampling. In: Handbook of Statistics, Vol. 6: Sampling (P. R. Krishnaiah and C. R. Rao, eds.), North Holland, Amsterdam 1988, pp. 291-331. | MR

[46] P. K. Sen, M. Ghosh: On bounded length sequential confidence intervals based on one-sample rank order statistics. Ann. Math. Statist. 42 (1971), 189-203. | MR | Zbl

[47] P. K. Sen, M. Ghosh: On strong convergence of regression rank statistics. Sankhya A 34 (1972), 335-348. | MR | Zbl

[48] R. J. Serfiing: Probability inequalities for the sum sampling without replacement. Ann. Statist. 2 (1974), 39-48. | MR

[49] J. A. Víšek: Asymptotic distribution of sample estimate for rejective, Sampford and successive sampling. In: Contributions to Statistics: Jaroslav Hájek Memorial Volume (J. Jurečková, ed.), Academia, Prague and Reidel, Dordrecht 1979, pp. 363-376. | MR

[50] A. Wald, J. Wolfowitz: Statistical tests based on permutations of the observations. Ann Math. Statist. 15 (1974), 358-372. | MR