@article{KYB_1995_31_2_a0,
author = {Hinrichsen, Diederich and O'Halloran, Joyce},
title = {A pencil approach to high gain feedback and generalized state space systems},
journal = {Kybernetika},
pages = {109--139},
year = {1995},
volume = {31},
number = {2},
mrnumber = {1334505},
zbl = {0862.93033},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1995_31_2_a0/}
}
Hinrichsen, Diederich; O'Halloran, Joyce. A pencil approach to high gain feedback and generalized state space systems. Kybernetika, Tome 31 (1995) no. 2, pp. 109-139. http://geodesic.mathdoc.fr/item/KYB_1995_31_2_a0/
[1] P. Brunovský: A classification of linear controllable systems. Kybernetika 3 (1970), 173-187. | MR
[2] J. D. Cobb: Controllability, observability, and duality in singular systems. IEEE Trans. Automat. Control AC-29 (1984), 1076-1082. | MR
[3] C. DeConcini D. Eisenbud, C. Procesi: Young diagrams and determinantal varieties. Invent. Math. 56(1980), 129-165. | MR
[4] E. R. Gantmacher: The Theory of Matrices. Volume 1 and 2. Chelsea, New York 1959.
[5] H. Gliising-Luerlien: A feedback canonical form for singular systems. Internat. J. Control 52 (1990), 347-376. | MR
[6] H. Gliising-LuerBen: Gruppenaktionen in der Theorie singularer Systeme. Ph.D. Thesis, Institut fur Dynamische Systeme, Universitat Bremen, 1991.
[7] D. Hinrichsen, J. O'Halloran: A complete characterization of orbit closures of controllable singular systems under restricted system equivalence. SIAM J. Control Optim. 25 (1990), 602-623. | MR | Zbl
[8] D. Hinrichsen, J. O'Halloran: The orbit closure problem for matrix pencils: Necessary conditions and an application to high gain feedback. In: New Trends in Systems Theory, Birkhauser 1991, pp. 388-392. | MR | Zbl
[9] D. Hinrichsen, J. O'Halloran: Orbit closures of matrix pencils and system limits under high gain feedback. In: Proc. 29th IEEE Conference on Decision and Control, Honolulu 1990, pp. 55-60.
[10] D. Hinrichsen, J. O'Halloran: A note on the degeneration of systems under pencil equivalence. In: Proc. 30th IEEE Conference on Decision and Control, Brighton 1991, pp. 1431-1432.
[11] D. Hinrichsen, J. O'Halloran: Orbit closure of singular matrix pencils. J. Pure Appl. Algebra 81 (1992), 117-137.
[12] D. Hinrichsen, J. O'Halloran: A note on the orbit closure problem for the generalized feedback group. In: Systems and Networks: Mathematical Theory and Applications, Vol. II - Invited and Contributed Papers, Akademie-Verlag, Berlin 1994, pp. 221-224. | Zbl
[13] R. E. Kalman: Kronecker invariants and feedback. In: Ordinary Differential Equations, Proc. Conf. Ordinary Differential Equations (Weiss, ed.), Washington 1971. | MR
[14] L. Kronecker: Algebraische Reduktion der Schaaren bilinearer Formen. S.-B. Akad. (1890), pp. 763-776.
[15] V. Kučera, P. Zagalak: Fundamental theorem of state feedback for singular systems. Automatica 24 (1988), 653-658. | MR
[16] F. L. Lewis, K. Ozcaldiran: Reachability and controllability for descriptor systems. In: Proceedings of the 27th Midwestern Symposium on Circuits and Systems, Morgantown, West Virginia 1984, pp. 690-695.
[17] J. J. Loiseau K. Ozcaldiran M. Malabre, N. Karcanias: Feedback canonical forms of singular systems. Kybernetika 27 (1991), 289-305. | MR
[18] J. O'Halloran: Feedback equivalence of constant linear systems. Systems Control Lett. 5 (1987), 241-246. | MR | Zbl
[19] K. Ozcaldiran, F. L. Lewis: On the regularizability of singular systems. IEEE Trans. Automat. Control 50 (1990), 1156-1160. | MR
[20] A. C. Pugh G. E. Hay ton, P. Fretwell: Transformation of matrix pencils and implications in linear systems theory. Internat. J. Control 45 (1987), 529-548. | MR
[21] H. H. Rosenbrock: State Space and Multivariable Theory. Nelson-Wiley, New York 1970. | MR | Zbl
[22] H. H. Rosenbrock: Structural properties of linear dynamical systems. Internat. J. Control 20 (1974), 177-189. | MR | Zbl
[23] G.C. Verghese B. C. Levy, T. Kailath: A generalized state-space for singular systems. IEEE Trans. Automat. Control AC-26 (1981), 811-830. | MR
[24] K. Weierstrass: Zur Theorie der bilinearen und quadratischen Formen. Monatsh. Akad. Wiss. (1867), 310-338.
[25] J. C. Willems: Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. Automat. Control 56 (1991), 259-294. | MR | Zbl
[26] W. M. Wonham: Linear Multivariable Control: A Geometric Approach. Second edition. Springer-Verlag, Heidelberg 1979. | MR | Zbl
[27] E. L. Yip, R. F. Sincovic: Solvability, controllability, and observability of continuous descriptor systems. IEEE Trans. Automat. Control AC-26 (1981), 702-707. | MR
[28] K. D. Young P. V. Kokotovic, and V.I. Utkin: A singular perturbation analysis of high-gain feedback systems. IEEE Trans. Automat. Control AC-22 (1977), 931-937. | MR