@article{KYB_1995_31_1_a4,
author = {\v{S}indel\'a\v{r}, Jan},
title = {Variational theorems in gnostical theory of uncertain data},
journal = {Kybernetika},
pages = {65--82},
year = {1995},
volume = {31},
number = {1},
mrnumber = {1324661},
zbl = {0873.62004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1995_31_1_a4/}
}
Šindelář, Jan. Variational theorems in gnostical theory of uncertain data. Kybernetika, Tome 31 (1995) no. 1, pp. 65-82. http://geodesic.mathdoc.fr/item/KYB_1995_31_1_a4/
[1] G. Birkhoff, S. Mac Lane: Algebra. MacMillan Company, New York 1968. | MR
[2] P. Kovanic: Gnostical theory of individual data. Problems Control Inform. Theory 13 (1984), 4, 259-274. | MR | Zbl
[3] P. Kovanic: Gnostical theory of small samples of real data. Problems Control Inform. Theory 13 (1984), 5, 303-319. | MR | Zbl
[4] P. Kovanic: On relations between information and physics. Problems Control Inform. Theory 13 (1984), 6, 383-399. | MR | Zbl
[5] P. Kovanic: A new theoretical and algorithmical basis for estimation, identification and control. Automatica 22 (1986), 6, 657-674. | Zbl
[6] P. Kovanic: Gnostical Theory of Uncertain Data. Doctor of Sciences (DrSc) Thesis, Institute of Information Theory and Automation, Czechoslovak Academy of Sciences, Prague 1990.
[7] P. Kovanic: Optimization problems of gnostics. Conference "Optimization-Based Computer-Aided Modelling and Design", The Hague, April 2-4, 1991 (accepted).
[8] B.A. Rozenfeld: Mnogomernye prostranstva. Nauka, Moscow 1966. | MR
[9] W. Rudin: Real and Complex Analysis. McGraw-Hill, New York 1979.
[10] I. Vajda: Minimum-distance and gnostical estimators. Problems Control Inform. Theory 17 (1988), 5, 253-266. | MR | Zbl
[11] I. M. Yaglom: A simple non-euclidean geometry and its physical basis. Springer-Verlag, New York 1979. | MR | Zbl