@article{KYB_1995_31_1_a0,
author = {And\v{e}l, Ji\v{r}{\'\i}},
title = {Bayesian analysis of the model of hidden periodicities},
journal = {Kybernetika},
pages = {1--16},
year = {1995},
volume = {31},
number = {1},
mrnumber = {1324657},
zbl = {0858.62081},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1995_31_1_a0/}
}
Anděl, Jiří. Bayesian analysis of the model of hidden periodicities. Kybernetika, Tome 31 (1995) no. 1, pp. 1-16. http://geodesic.mathdoc.fr/item/KYB_1995_31_1_a0/
[1] H. Z. An Z. G. Chen, E. J. Hannan: The maximum of the periodogram. J. Multivariate Anal. 13 (1983), 383-400. | MR | Zbl
[2] J. Anděl: Statistische Analyse von Zeitreihen. Akademie-Verlag, Berlin 1984. | MR
[3] E. Bølviken: New tests of significance in periodogram analysis. Scand. J. Statist. 10 (1983), 1-9. | MR
[4] D. R. Brillinger: Fitting cosines: some procedures and some physical examples. In: Applied Probability, Stochastic Processes and Sampling Theory (MacNeill and G. J. Umphrey, eds.), pp. 75-100, Reidel, Dordrecht 1987.
[5] Z. G. Chen: Consistent estimates for hidden frequencies in a linear process. Adv. in Appl. Probab. 20 (1988), 295-314. | MR | Zbl
[6] S. T. Chiu: Detecting periodic components in a white Gaussian time series. J. Roy. Statist. Soc. Ser. B 51 (1989), 249-259. | MR | Zbl
[7] T. Cipra: Improvement of Fisher's test of periodicity. Apl. mat. 28 (1983), 186-193. | Zbl
[8] T. Cipra: Investigation of periodicity for dependent observations. Apl. mat. 29 (1984), 134-142. | MR | Zbl
[9] T. Cipra: Tests of periodicity with missing observations. Statistics 22 (1991), 233-243. | MR | Zbl
[10] D. Damsleth, E. Spjøtvoll: Estimation of trigonometric components in time series. J. Amer. Statist. Assoc. 77 (1982), 381-387.
[11] F. N. David, M. G. Kendall: Tables of symmetric functions. Part I. Biometrika 36 (1949), 431-449. | MR
[12] M. H. DeGroot: Optimal Statistical Decisions. McGraw-Hill, New York 1970. | MR | Zbl
[13] R. A. Fisher: Test of significance in harmonic analysis. Proc. Roy. Soc. Ser. A 125 (1929), 54-59.
[14] E J. Hannan: Time Series Analysis. Wiley, New York 1960. | Zbl
[15] E. J. Hannan: Testing for a jump in the spectral function. J. Roy. Statist. Soc. Ser. B 23 (1961), 394-404. | MR | Zbl
[16] E. J. Hannan: Non-linear time series regression. J. Appl. Probab. 8 (1971), 767-780. | MR | Zbl
[17] E. J. Hannan: The estimation of frequency. J. Appl. Probab. 10 (1973), 510-519. | MR | Zbl
[18] E. J. Hannan, M. Mackisack: A law of the iterated logarithm for an estimate of frequency. Stochastic Process. Appl. 22 (1986), 103-109. | MR | Zbl
[19] H. O. Hartley: Tests of significance in harmonic analysis. Biometrika 56 (1949), 194-201. | MR | Zbl
[20] P. L. Hsu, H. Robbins: Complete convergence and the law of large numbers. Proc. Nat. Acad. Sci. U.S.A. 33 (1947), 25-31. | MR | Zbl
[21] B. Kedem: Detection of periodicities by higher-order crossing. J. Time Ser. Anal. 8 (1987), 39-50. | MR
[22] T. Lewis, N. R. J. Fieller: A recursive algorithm for null distribution for outliers: I. Gamma samples. Technometrics 21 (1979). 371-376. | MR
[23] M. S. Mackisack, D. S. Poskitt: Autoregressive frequency estimation. Biometrika 76 (1989), 565-575. | MR | Zbl
[24] I. B. MacNeill: Tests for periodic components in multiple time series. Biometrika 61 (1974), 57-70. | MR | Zbl
[25] M. B. Priestley: The analysis of stationary processes with mixed spectra - I. J. Roy. Statist. Soc. Ser. B 24 (1962), 215-233. | MR | Zbl
[26] M. B. Priestley: Analysis of stationary processes with mixed spectra - II. J. Roy. Statist. Soc. Ser. B 24 (1962), 511-529. | MR
[27] B. G. Quinn: Estimating the number of terms in a sinusoidal regression. J. Time Ser. Anal. 10 (1989), 71-75. | MR | Zbl
[28] B. G. Quinn, J. M. Fernandes: A fast efficient technique for the estimation of frequency. Biometrika 18 (1991), 489 - 497. | MR | Zbl
[29] B. G. Quinn, P. J. Thomson: Estimating the frequency of a periodic function. Biometrika 18 (1991), 65-74. | MR | Zbl
[30] A. Schuster: On the investigation of hidden periodicities with application to the supposed 26-day period of meteorological phenomena. Terr. Magn. Atmos. Electr. 3 (1898), 13-41.
[31] M. Shimshoni: On Fisher's test of significance in harmonic analysis. Geophys. J. R. Astronom. Soc. 23 (1971), 373-377.
[32] A. F. Siegel: Testing for periodicity in a time series. J. Amer. Statist. Assoc. 75 (1980), 345-348. | Zbl
[33] W. F. Stout: Almost Sure Convergence. Academic Press, New York 1974. | MR | Zbl
[34] A. T. Walden: Asymptotic percentage points for Siegel's test statistic for compound periodicities. Biometrika 19 (1992), 438-440.
[35] A. M. Walker: Some asymptotic results for the periodogram of a stationary time series. J. Austal. Math. Soc. 5 (1965), 107-128. | MR | Zbl
[36] P. Whittle: The simultaneous estimation of a time-series harmonic components and covariance structure. Trabajos Estadfst. Investigacion Oper. 3 (1952), 43-57. | MR | Zbl
[37] P. Whittle: The statistical analysis of a seiche record. J. of Marine Research (Sears Foundation) 13 (1954), 76-100. | MR
[38] G. U. Yule: On a method of investigating periodicities in disturbed series with special reference to Wolfer's sunspot numbers. Philos. Trans. Roy. Soc. London Ser. A 226 (1927), 267-298.