The partial non interacting problem: Structural and geometric solutions
Kybernetika, Tome 30 (1994) no. 6, pp. 645-658 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 93B11, 93B27, 93B50, 93B52, 93C05
@article{KYB_1994_30_6_a8,
     author = {Garc{\'\i}a, Juan Carlos Mart{\'\i}nez and Malabre, Michel and Rabah, Rabah},
     title = {The partial non interacting problem: {Structural} and geometric solutions},
     journal = {Kybernetika},
     pages = {645--658},
     year = {1994},
     volume = {30},
     number = {6},
     mrnumber = {1323667},
     zbl = {0827.93013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1994_30_6_a8/}
}
TY  - JOUR
AU  - García, Juan Carlos Martínez
AU  - Malabre, Michel
AU  - Rabah, Rabah
TI  - The partial non interacting problem: Structural and geometric solutions
JO  - Kybernetika
PY  - 1994
SP  - 645
EP  - 658
VL  - 30
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1994_30_6_a8/
LA  - en
ID  - KYB_1994_30_6_a8
ER  - 
%0 Journal Article
%A García, Juan Carlos Martínez
%A Malabre, Michel
%A Rabah, Rabah
%T The partial non interacting problem: Structural and geometric solutions
%J Kybernetika
%D 1994
%P 645-658
%V 30
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1994_30_6_a8/
%G en
%F KYB_1994_30_6_a8
García, Juan Carlos Martínez; Malabre, Michel; Rabah, Rabah. The partial non interacting problem: Structural and geometric solutions. Kybernetika, Tome 30 (1994) no. 6, pp. 645-658. http://geodesic.mathdoc.fr/item/KYB_1994_30_6_a8/

[1] G. Basile, G. Marro: Controlled Invariants and Conditioned Invariants in Linear System Theory. Prentice Hall, New Jersey 1992. | MR

[2] C. Commault, J. M. Dion: Structure at Infinity of Linear Multivariable Systems: A Geometric Approach. Presented at the 20th IEEE Conference on Decision and Control San Diego, CA 1981. | MR | Zbl

[3] J. Descusse, J. M. Dion: On the structure at infinity of linear square decoupled systems. IEEE Trans. Automat. Control AC-27 (1982), 3, 971-974. | MR | Zbl

[4] J. Descusse J. F. Lafay, M. Malabre: On the structure at infinity of linear block-decouplable systems: The general case. IEEE Trans. Automat. Control AC-28 (1983), 12, 1115-1118. | MR

[5] E. Emre, L. M. Silverman: Partial model matching of linear systems. IEEE Trans. Automat. Control AC-25 (1980), 4, 280-281. | MR | Zbl

[6] P. L. Falb, W. A. Wolovich: Decoupling in the Design and Synthesis of Multivariable Control Systems. IEEE Trans. Automat. Control AC-12 (1967), 12, 651-659.

[7] A. Godot: Découplage partiel avec stabilité. Mémoire de D. E. A., Laboratoire d'Automatique de Nantes, Ecole Centrale de Nantes, septembre 1994.

[8] M. L. J. Hautus, M. Heymann: Linear feedback, an algebraic approach. SIAM J. Control Optim. 16 (1978), 1, 83-105. | MR | Zbl

[9] V. Kučera, J. Descusse: On the determination of the structure at infinity of a rational matrix. Annales 1982, pp. 37-44, Ecole Nationale Superieure de Mecanique, Nantes, France, 1982.

[10] M. Malabre: Structure à l'Infini des Triplets Invariants. Application à la Poursuite Parfaite de Modèle. Lecture Notes in Control and Inform. Sci. 44 (1982), 43-53. | MR | Zbl

[11] M. Malabre, J. C. Martinez Garcia: The partial model matching or partial disturbance rejection problem: Geometric and structural solutions. IEEE Trans. Automat. Control, to appear. | MR | Zbl

[12] M. Malabre, R. Rabah: Structure at infinity, model matching and disturbance rejection for linear systems with delays. Kybernetika 29 (1993), 5, 485-498. | MR | Zbl

[13] J. C. Martínez García, M. Malabre: The row by row decoupling problem with stability. IEEE Trans. Automat. Control, to appear.

[14] J. C. Martínez García M. Malabre, V. Kučera: The partial model matching problem with stability. Systems Control Lett., to appear. | MR

[15] A. I. G. Vardulakis: Linear Multivariable Control: Algebraic Analysis and Synthesis Methods. John Wiley, New York 1991. | MR | Zbl

[16] C. G. Verghese: Infinite Frequency Behaviour in Generalized Dynamical Systems. PhD Dissertation, Stanford University 1978.

[17] W. M. Wonham: Linear Multivariable Control: A Geometric Approach. Springer-Verlag, New York 1985. | MR | Zbl